

Amazon Redshift Cookbook
Second Edition

Recipes for building modern data warehousing solutions

Shruti Worlikar

Harshida Patel

Anusha Challa

Amazon Redshift Cookbook
Second Edition

Copyright © 2025 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in

any form or by any means, without the prior written permission of the publisher, except in the case of brief

quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information

presented. However, the information contained in this book is sold without warranty, either express or

implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable for any

damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products

mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee

the accuracy of this information.

Portfolio Director: Rujuta Paradkar

Relationship Lead: Teny Thomas

Project Manager: Samuel Christa

Content Engineer: Divya Kartik Poliyath

Technical Editor: Aniket Shetty

Copy Editor: Safis Editing
Indexer: Manju Arasan

Production Designer: Prashant Ghare

Growth Lead: Kunal Raj

First published: June 2021

Second edition: April 2025

Production reference: 1040425

Published by Packt Publishing Ltd.

Grosvenor House

11 St Paul’s Square

Birmingham

B3 1RB, UK.

ISBN 978-1-83620-691-0

www.packtpub.com

http://www.packtpub.com

Foreword

I am pleased to present the second edition of this comprehensive guide to Amazon Redshift.

As Vice President and Distinguished Engineer for Analytics at AWS, I have had the privilege of

witnessing the remarkable evolution of Amazon Redshift, our fully managed, petabyte-scale

data warehousing service. We have significantly transformed Amazon Redshift into a modern,
cloud-native data analytics solution while maintaining industry-leading security, price/perfor-

mance, and scalability. This book marks an important milestone in our ongoing commitment to

empowering organizations with superior data analytics capabilities.

Since the release of the first edition of this book, Amazon Redshift has seen substantial advance-

ments. Notable innovations include the introduction of Redshift Serverless and data sharing for

both read and write workloads across Amazon Redshift compute environments within the same

account, across different accounts, and even across Regions. Through SageMaker Lakehouse, Am-

azon Redshift databases can now be automatically visible to and accessible from multiple Amazon

Redshift compute environments. We have also expanded our Zero-ETL, streaming ingestion, and

auto-copy capabilities to make it very easy to move data into the analytics-optimized Amazon

Redshift Managed Storage and incorporated cutting-edge AI/ML functionalities during query

processing, all of which reflect our dedication to simplifying data management while enhancing
analytical power.

This second edition, authored by Shruti, Harshida, and Anusha, provides an updated and thor-

ough exploration of Amazon Redshift’s architecture, administration, optimization strategies, and

emerging trends. It covers everything from fundamental concepts to advanced implementations,

making it an invaluable resource for data professionals at all stages of their careers. A key feature

of this edition is its focus on practical, real-world implementations. The authors have distilled

their extensive experience working with a diverse range of customers from various sectors into

actionable insights and hands-on techniques. Whether you are migrating from legacy platforms,

building new data warehouse workloads, or exploring AI/ML-driven analytics, this book provides

the necessary guidance to unlock the full potential of Amazon Redshift. As data continues to grow

in both volume and complexity, the role of efficient and scalable data warehousing becomes even
more critical. This book equips you with the knowledge to leverage Amazon Redshift’s power,

enabling you to drive innovation and make data-driven decisions with confidence.

I commend the authors, Shruti, Harshida, and Anusha, for their dedication to producing this in-

valuable resource. Whether you are new to Amazon Redshift or seeking to deepen your expertise,

this book will be an indispensable companion in your data analytics journey.

Ippokratis Pandis

VP/Distinguished Engineer

AWS Analytics

Contributors

About the authors
Shruti Worlikar is a cloud professional with technical expertise in data and analytics across

cloud platforms. Her background has led her to become an expert in on-premises-to-cloud mi-

grations and building cloud-based scalable analytics applications. Shruti earned her bachelor’s

degree in electronics and telecommunications from Mumbai University in 2009 and later earned

her master’s degree in telecommunications and network management from Syracuse University

in 2011. Her work history includes work at JPMorgan Chase, MicroStrategy, and Amazon Web

Services (AWS). She is currently working in the role of Sr. Manager, Analytics Specialist SA, at

AWS, helping customers to solve real-world analytics business challenges with cloud solutions

and working with service teams to deliver real value. Shruti is the DC Chapter Director for the

non-profit Women in Big Data (WiBD) and engages with chapter members to build technical

and business skills to support their career advancements. Originally from Mumbai, India, Shruti

currently resides in Northern Virginia, with her husband and two kids.

I would like to express my deepest gratitude to my husband and two children for their unwavering support

and understanding during the many evenings and weekends I spent writing this book. Their patience and

encouragement made this journey possible. I would like to thank the Packt team for their invaluable support

throughout the writing and publishing journey. I am so proud to be part of the extended Redshift team where

we are innovating to solve the most complex data warehousing challenges for our customers.

Harshida Patel is a principal analytics specialist solution architect at AWS, enabling customers

to build scalable data lake and data warehousing applications using AWS analytical services. She

has presented Amazon Redshift deep-dive sessions at re:Invent. Harshida has a bachelor’s degree

in electronics engineering and a master’s in electrical and telecommunication engineering. She

has over 15 years of experience in architecting and building end-to-end data pipelines in the data

management space. In the past, Harshida has worked in the insurance and telecommunication

industries. She enjoys traveling and spending quality time with friends and family, and she lives

in Virginia with her husband and son.

I would like to sincerely thank Shruti for providing the opportunity to co-author this second edition. Sincere

thanks to my son and husband for motivating me to complete the chapters on time.

Anusha Challa is a seasoned professional with over 15 years of expertise in architecting data

and analytics solutions across on-premises and cloud environments. She has provided guidance

to hundreds of Amazon Redshift customers, empowering them to design scalable and robust

end-to-end data warehouse architectures. Anusha speaks at various AWS events, such as re:In-

vent and AWS Summits, where she shares best practices for using Amazon Redshift and other

AWS analytics services. She has a bachelor’s degree in computer science and a master’s degree

with a specialization in Machine Learning. Based in Chicago, Anusha enjoys reading books and

traveling during her free time.

I would like to thank my parents, husband, and sister for their unwavering love, support, and patience—

especially during my long disappearances into writing mode. A huge thanks to Shruti and Harshida for

being fantastic co-authors and wonderful friends throughout this journey. My sincere appreciation to our

amazing reviewers, Raghu, Nita, and Ritesh, for their invaluable feedback. It has been a pleasure working

with the Packt team, whose support made this process so much smoother. My heartfelt thanks to the entire

Amazon Redshift team for their guidance and encouragement. I couldn’t have done this without all of you!

About the reviewers
Raghu Kuppala is a Redshift Specialist Solutions Architect at Amazon Web Services (AWS). He

has 15 years of experience in architecting Business Intelligence and Analytics applications. At AWS,

he helps customers—from startups to Fortune 500 companies—design scalable data warehouse

and analytics solutions that meet both predictable and unpredictable demands across various

industries. Based in Houston, Texas, Raghu enjoys exploring local coffee shops.

Ritesh Kumar Sinha is a Senior Analytics Specialist Solution Architect at Amazon Web Ser-

vices (AWS). He holds a bachelor’s degree in computer science and engineering and has over 19

years of experience in building data management solutions. At AWS, he specializes in helping

Amazon Redshift customers design scalable data warehouse architectures. He is passionate about

creating workshops, authoring blogs, and developing reusable solutions for customers. Based in

San Francisco, Ritesh lives with his wife and two daughters. He deeply values the guidance of his

parents and continues to learn from them. Outside of work, he finds joy in gardening, acquiring
new skills, and cherishing quality time with friends and family.

Nita Shah is a Senior Analytics Specialist Solution Architect at AWS based out of New York. Nita

has a bachelor’s degree in electrical engineering and a master’s in computer science. She has

over 20 years of experience in architecting and building end-to-end data pipelines in the data

management space. She loves to help customers design end-to-end analytics solutions on AWS.

In the past, Nita has worked in the retail, insurance, and telecommunication industries. Outside

of work, she enjoys traveling.

Table of Contents

Preface xxiii

Chapter 1: Getting Started with Amazon Redshift 1

Creating an Amazon Redshift Serverless data warehouse using the AWS Console �������������� 2

Getting ready • 3

How to do it… • 3

How it works… • 6

Creating an Amazon Redshift provisioned cluster using the AWS Console ������������������������� 6

Getting ready • 6

How to do it… • 6

Creating an Amazon Redshift Serverless cluster using AWS CloudFormation ��������������������� 8

Getting ready • 8

How to do it… • 8

How it works… • 10

Creating an Amazon Redshift provisioned cluster using AWS CloudFormation ���������������� 12

Getting ready • 13

How to do it… • 13

Connecting to a data warehouse using Amazon Redshift query editor v2 �������������������������� 17

Getting ready • 17

How to do it… • 17

Table of Contentsx

Connecting to Amazon Redshift using SQL Workbench/J client ��������������������������������������� 20

Getting ready • 20

How to do it… • 20

Connecting to Amazon Redshift using Jupyter Notebook �� 23

Getting ready • 24

How to do it… • 24

Connecting to Amazon Redshift programmatically using Python and the Redshift Data API �

28

Getting ready • 28

How to do it… • 29

Connecting to Amazon Redshift using Command Line (psql) ��� 30

Getting ready • 31

How to do it… • 31

Chapter 2: Data Management 33

Technical requirements �� 34

Managing a database in Amazon Redshift ��� 34

Getting ready • 34

How to do it… • 34

Managing a schema in a database ��� 36

Getting ready • 36

How to do it… • 36

Managing tables in a database �� 38

Getting ready • 39

How to do it… • 39

How it works… • 42

See also... • 42

Managing views in a database ��� 43

Getting ready • 43

How to do it… • 43

Table of Contents xi

Managing materialized views in a database �� 45

Getting ready • 45

How to do it… • 45

How it works… • 48

Managing stored procedures in a database ��� 49

Getting ready • 49

How to do it… • 49

How it works… • 52

See also... • 52

Managing UDFs in a database ��� 52

Getting ready • 53

How to do it… • 53

How it works… • 56

See also... • 56

Chapter 3: Loading and Unloading Data 57

Technical requirements �� 58

Loading data from Amazon S3 using COPY ��� 58

Getting ready • 59

How to do it… • 59

How it works… • 64

See also… • 64

Loading data from Amazon DynamoDB �� 65

Getting ready • 65

How to do it… • 66

How it works… • 67

Updating and inserting data ��� 68

Getting ready • 68

How to do it… • 68

Table of Contentsxii

Ingesting data from transactional sources using AWS DMS �� 74

Getting ready • 74

How to do it… • 75

How it works… • 83

See also… • 83

Cataloging and ingesting data using AWS Glue ��� 84

Getting ready • 84

How to do it… • 84

How it works… • 89

Streaming data to Amazon Redshift via Amazon Data Firehose �� 89

Getting ready • 90

How to do it… • 90

How it works… • 95

Unloading data to Amazon S3 ��� 95

Getting ready • 95

How to do it… • 96

See also… • 97

Chapter 4: Zero-ETL Ingestions 99

Technical requirements �� 100

Ingesting data from Aurora MySQL/Aurora Postgres/RDS MySQL using zero-ETL

integration �� 100

Getting ready • 101

How to do it… • 101

How it works… • 109

Ingesting data from Amazon DynamoDB using zero-ETL integration ����������������������������� 110

Getting ready • 110

How to do it… • 110

How it works… • 117

Table of Contents xiii

Ingesting data from SaaS applications like Salesforce using zero-ETL integration ����������� 117

Getting ready • 118

How to do it… • 120

Ingesting streaming data from Amazon Kinesis Data Streams (KDS) ������������������������������� 129

Getting ready • 129

How to do it… • 130

Ingesting streaming data from Amazon Managed Streaming for Apache Kafka (MSK) ���� 133

Getting ready • 134

How to do it… • 134

How it works… • 135

Near-real-time ingestion of data from Amazon S3 using auto-copy ��������������������������������� 136

Getting ready • 137

How to do it… • 138

How it works… • 142

Chapter 5: Scalable Data Orchestration for Automation 143

Technical requirements �� 144

Scheduling queries using Amazon Redshift Query Editor V2 ��� 145

Getting ready • 145

How to do it… • 145

How it works… • 150

Event-driven applications using Amazon EventBridge on Amazon Redshift provisioned

clusters ��� 150

Getting ready • 151

How to do it… • 151

How it works… • 159

Event-driven applications using AWS Lambda on Amazon Redshift provisioned clusters �����

160

Getting ready • 160

How to do it… • 161

Table of Contentsxiv

How it works… • 165

See also... • 165

Orchestration using AWS Step Functions on provisioned clusters ����������������������������������� 165

Getting ready • 166

How to do it… • 166

How it works… • 171

See also... • 172

Orchestration using Amazon Managed Workflows for Apache Airflow on provisioned
clusters �� 172

Getting ready • 172

How to do it… • 173

How it works… • 179

Chapter 6: Platform Authorization and Security 181

Technical requirements �� 182

Managing infrastructure security ��� 183

Getting ready • 183

How to do it… • 183

Data encryption at rest ��� 188

Getting ready • 188

How to do it… • 188

Data encryption in transit �� 191

Getting ready • 191

How to do it... • 191

Managing superusers using an Amazon Redshift provisioned cluster ����������������������������� 194

Getting ready • 194

How to do it… • 194

See also… • 195

Table of Contents xv

Using IAM authentication to generate database user credentials for Amazon Redshift

serverless clusters �� 195

Getting ready • 196

How to do it... • 196

Managing audit logs �� 197

Getting ready • 198

How to do it… • 198

How it works… • 201

Monitoring Amazon Redshift �� 202

Getting ready • 202

How to do it… • 202

How it works… • 206

Single sign-on using AWS IAM Identity Center ��� 206

Getting ready • 206

How to do it… • 207

How it works… • 218

See also… • 219

Metadata security �� 219

Getting ready • 219

How to do it... • 220

How it works… • 222

Chapter 7: Data Authorization and Security 223

Technical requirements �� 223

Implementing RBAC ��� 224

Getting ready • 224

How to do it… • 224

How it works… • 228

Table of Contentsxvi

Implementing column-level security �� 229

Getting ready • 229

How to do it… • 229

How it works… • 230

Implementing row-level security ��� 231

Getting ready • 231

How to do it… • 231

How it works… • 234

Implementing dynamic data masking �� 235

Getting ready • 235

How to do it… • 235

How it works… • 240

Chapter 8: Performance Optimization 241

Technical requirements �� 242

Configuring Amazon Redshift Advisor for provisioned clusters �������������������������������������� 243

Getting ready • 243

How to do it… • 244

How it works… • 245

Managing column compression �� 245

Getting ready • 245

How to do it… • 246

How it works… • 249

Managing data distribution �� 249

Getting ready • 250

How to do it… • 251

How it works… • 254

Managing the sort key �� 254

Getting ready • 255

How to do it… • 255

How it works… • 260

Table of Contents xvii

Analyzing and improving queries for provisioned clusters ��� 261

Getting ready • 261

How to do it… • 261

How it works… • 264

Configuring Workload Management (WLM) for provisioned cluster ������������������������������ 265

Getting ready • 265

How to do it… • 265

How it works… • 269

Utilizing concurrency scaling for provisioned clusters �� 270

Getting ready • 270

How to do it… • 271

How it works… • 273

Optimizing Spectrum queries for provisioned clusters ��� 274

Getting ready • 274

How to do it… • 274

How it works… • 277

Chapter 9: Cost Optimization 279

Technical requirements �� 280

AWS Trusted Advisor �� 280

Getting ready • 280

How to do it… • 281

How it works… • 282

Amazon Redshift Reserved Instance pricing ��� 283

Getting ready • 283

How to do it… • 284

See also... • 286

Scheduling pause and resume for Amazon Redshift provisioned cluster ������������������������� 286

Getting ready • 287

How to do it… • 287

How it works… • 289

Table of Contentsxviii

Scheduling elastic resizing for an Amazon Redshift provisioned cluster ������������������������� 289

Getting ready • 290

How to do it… • 290

How it works… • 292

Using cost controls to set actions for Redshift Spectrum ��� 293

Getting ready • 293

How to do it… • 293

See also… • 296

Using cost controls to set actions for concurrency scaling for an Amazon provisioned

cluster ��� 296

Getting ready • 296

How to do it… • 296

See also… • 298

Using cost controls for Redshift Serverless �� 298

Getting ready • 298

How to do it… • 298

How it works… • 302

Chapter 10: Lakehouse Architecture 305

Technical requirements �� 306

Building a data lake catalog using AWS Lake Formation ��� 307

Getting ready • 308

How to do it… • 309

How it works… • 324

Carrying out a data lake export from Amazon Redshift ��� 324

Getting ready • 324

How to do it… • 324

Extending a data warehouse using Amazon Redshift Spectrum �������������������������������������� 328

Getting ready • 328

How to do it… • 328

Table of Contents xix

Querying an operational source using a federated query ��� 331

Getting ready • 331

How to do it… • 332

Amazon SageMaker Lakehouse ��� 337

Getting ready • 339

How to do it… • 339

How it works… • 346

Chapter 11: Data Sharing with Amazon Redshift 347

Technical requirements �� 349

Data sharing read access across multiple Amazon Redshift data warehouses ����������������� 350

Getting ready • 350

How to do it… • 351

How it works… • 353

See also... • 353

Data sharing write access across multiple Amazon Redshift data warehouses ��������������� 353

Getting ready • 353

How to do it… • 354

How it works… • 355

Data sharing using Amazon DataZone for cross-collaboration and self-service analytics ������

356

Getting ready • 356

How to do it… • 356

How it works… • 376

Data sharing using AWS Data Exchange for monetization and subscribing to third-party

data �� 377

Getting ready • 378

How to do it… • 378

How it works… • 381

Table of Contentsxx

Chapter 12: Generative AI and ML with Amazon Redshift 383

Technical requirements �� 384

Building SQL queries automatically using Amazon Q generative SQL ����������������������������� 384

Getting ready • 385

How to do it… • 385

How it works… • 387

Managing Amazon Redshift ML �� 387

Getting ready • 388

How to do it… • 389

How it works… • 391

Using LLMs in Amazon Bedrock using SQL statements �� 391

Getting ready • 392

How to do it… • 392

How it works… • 395

Using LLMs in Amazon SageMaker Jumpstart using SQL statements ����������������������������� 395

Getting ready • 395

How to do it… • 396

How it works… • 401

Querying your data with natural language prompts using Amazon Bedrock knowledge

bases for Amazon Redshift �� 401

Getting ready • 401

How to do it… • 402

How it works… • 408

Generative BI with Amazon Q with QuickSight querying an Amazon Redshift dataset ��� 409

Getting ready • 409

How to do it… • 410

How it works… • 420

Table of Contents xxi

Appendix 421

Recipe 1: Creating an IAM user ��� 421

Recipe 2: Storing database credentials using AWS Secrets Manager �������������������������������� 422

Recipe 3: Creating an IAM role for an AWS service �� 422

Recipe 4: Attaching an IAM role to the Amazon Redshift cluster ������������������������������������� 423

Other Books You May Enjoy 426

Index 429

Preface

Amazon Redshift is a fully managed, petabyte-scale AWS cloud data warehousing service. It en-

ables you to build new data warehouse workloads on AWS and migrate on-premises traditional

data warehousing platforms to Redshift.

This book on Amazon Redshift starts by focusing on the Redshift architecture, showing you how

to perform database administration tasks on Redshift. You’ll then learn how to optimize your data

warehouse to quickly execute complex analytic queries against very large datasets. Because of

the massive amount of data involved in data warehousing, designing your database for analytical

processing lets you take full advantage of Redshift’s columnar architecture and managed services.

As you advance, you’ll discover how to deploy fully automated and highly scalable extract, trans-

form, and load (ETL) processes, which help minimize the operational efforts that you have to

invest in managing regular ETL pipelines and ensure the timely and accurate refreshing of your

data warehouse. You’ll gain a clear understanding of Redshift use cases, data ingestion, data man-

agement, security, and scaling so that you can build a scalable data warehouse platform. Finally,

you’ll learn emerging trends in utilizing Redshift data warehouses to enable AI/ML use cases.

By the end of this Redshift book, you’ll be able to implement a Redshift-based data analytics

solution and will have understood the best-practice solutions to commonly faced problems.

Who this book is for
This book is for anyone involved in architecting, implementing, and optimizing an Amazon Red-

shift data warehouse, such as data warehouse developers, data analysts, database administrators,

data engineers, and data scientists. Basic knowledge of data warehousing, database systems, and

cloud concepts and familiarity with Redshift would be beneficial.

Prefacexxiv

What this book covers
Chapter 1, Getting Started with Amazon Redshift, discusses how Amazon Redshift is a fully managed,

petabyte-scale data warehouse service in the cloud. An Amazon Redshift data warehouse comes

in two deployment options: provisioned clusters (with one leader node and multiple compute

nodes) and serverless (with automatic provisioning and scaling). Amazon Redshift integrates with

lakehouse architecture for unified access to structured and semi-structured data. This chapter
provides hands-on guidance for creating and connecting to Amazon Redshift resources through

various methods.

Chapter 2, Data Management, discusses how a data warehouse system has very different design

goals compared to a typical transaction-oriented relational database system for online trans-

action processing (OLTP). Amazon Redshift is optimized for the very fast execution of complex

analytic queries against very large datasets. Because of the massive amounts of data involved in

data warehousing, designing your database for analytical processing lets you take full advantage

of the columnar architecture and managed service. This chapter delves into the different data

structure options to set up an analytical schema for the easy querying of your end users.

Chapter 3, Loading and Unloading Data, looks at how Amazon Redshift has in-built integrations

with data lakes and other analytical services and how it is easy to move and analyze data across

different services. This chapter discusses scalable options to move large datasets from a data lake

based out of Amazon S3 storage, as well as AWS analytical services such as Amazon DynamoDB,

ingesting from transactional sources using AWS DMS, cataloging with AWS Glue, and streaming

via Amazon Kinesis Data Firehose.

Chapter 4, Zero-ETL Ingestions, introduces AWS zero-ETL as a revolutionary suite of fully managed

integrations that streamline data analytics processes. This chapter explores how zero-ETL elim-

inates traditional ETL complexities by automatically replicating data from operational sources

to analytical destinations, enabling real-time insights without the need for complex data pipe-

line management. It covers various zero-ETL integration methods, including native database

integrations, ingestion from SaaS applications, streaming data ingestion, and near-real-time

ingestion from Amazon S3 using auto-copy. These solutions significantly reduce time to insight,
ensure data consistency, and allow organizations to scale their data operations efficiently while
maintaining separation between transactional and analytical workloads, ultimately enabling

faster, data-driven decision-making with reduced operational overhead and technical complexity.

Preface xxv

Chapter 5, Scalable Data Orchestration for Automation, explores AWS’s comprehensive suite of native

services for workflow integration and automation. The chapter focuses on ETL process workflows
for data warehouse refreshes, demonstrating how different tasks can be managed independently

using purpose-built services. It covers various orchestration methods, including query scheduling,

event-driven applications, workflow orchestration, and pipeline management. The chapter em-

phasizes how these tools enable the efficient management of complex data pipelines originating
from various sources, supporting downstream applications such as machine learning pipelines,

analytics dashboards, and business reports.

Chapter 6, Platform Authorization and Security, explores Amazon Redshift’s comprehensive security

features designed to meet the requirements of security-sensitive organizations within the AWS

Shared Responsibility Model. The chapter covers essential security aspects, including infrastruc-

ture security, data encryption, authentication, and metadata security. The chapter emphasizes

how these built-in features provide a robust security framework for protecting data while main-

taining fine-grained access controls for underlying data structures.

Chapter 7, Data Authorization and Security, focuses on Amazon Redshift’s granular data access con-

trol mechanisms for protecting sensitive information. The chapter explores key security features

focusing on fine-grained access control. These features work together to create a comprehensive
security framework that ensures users can only access and modify data according to their autho-

rization level, providing precise control over data visibility and manipulation rights.

Chapter 8, Performance Optimization, examines how Amazon Redshift, being a fully managed

service, provides great performance out of the box for most workloads. Amazon Redshift also

provides you with levers that help you maximize the throughputs when data access patterns are

already established. Performance tuning on Amazon Redshift helps you manage critical SLAs for

workloads and easily scale up your data warehouse to meet/exceed business needs.

Chapter 9, Cost Optimization, discusses how Amazon Redshift is one of the best price-performant

data warehouse platforms on the cloud. Amazon Redshift also provides you with scalability and

different options to optimize the pricing, such as elastic resizing, pause and resume, Reserved

Instances, and using cost controls. These options allow you to create the best price-performant

data warehouse solution.

Prefacexxvi

Chapter 10, Lakehouse Architecture, explores how Amazon Redshift serves as the foundation for the

lakehouse architectural pattern, enabling seamless data access across various analytics solutions

while preventing data silos. The chapter demonstrates how enterprises can query data across data

lakes, operational databases, and multiple data warehouses without constant data movement.

These patterns support unified data management, consistent security and governance, and flexi-
ble query engine usage, while maintaining compatibility with both AWS services and third-party

tools through standard Iceberg APIs. The architecture enables organizations to efficiently combine
data lakes, data warehouses, and purpose-built data stores under unified governance.

Chapter 11, Data Sharing with Amazon Redshift, explores Amazon Redshift’s capability to securely

share data across different Redshift data warehouses, AWS accounts, and Regions without phys-

ical data movement. This feature, enabled by Redshift’s decoupled storage-compute architecture,

provides live, transactionally consistent data views. Key benefits include workload isolation,
clear cost chargeback, cross-collaboration, scalable read/write access, and potential data mon-

etization. The chapter discusses common deployment patterns such as hub and spoke and data

mesh, which facilitate multi-warehouse architectures. These capabilities enable organizations to

implement flexible, efficient data-sharing strategies that support various business needs, from
internal collaboration to external data services.

Chapter 12, Generative AI and ML with Amazon Redshift, explores the integration of machine learn-

ing and generative AI capabilities within Amazon Redshift’s data warehouse environment. The

chapter demonstrates how Redshift enables users to create, train, and deploy ML models directly

within the warehouse, supporting both traditional supervised learning and advanced generative

AI applications. These capabilities showcase how Amazon Redshift combines traditional data

warehousing with cutting-edge AI capabilities to enhance data analytics and streamline processes

like forecasting, sentiment analysis, and query authoring.

To get the most out of this book
You will need access to an AWS account to perform all the recipes in this book. You will need

either administrator access to the AWS account or to work with an administrator who can help

create the IAM user, roles, and policies as listed in the different chapters. All the data needed in

the setup is provided as steps in the recipes, and the Amazon S3 bucket is hosted in the Europe

(Ireland) (eu-west-1) AWS Region. It is preferable to use the Europe (Ireland) AWS Region to

execute all the recipes. If you need to run the recipes in a different Region, you will need to copy

the data from the source bucket (s3://packt-redshift -cookbook/) to an Amazon S3 bucket

in the desired AWS Region, and use that in your recipes instead.

Preface xxvii

Download the example code files
The code bundle for the book is hosted on GitHub at https://github.com/PacktPublishing/

Amazon-Redshift-Cookbook-2E. We also have other code bundles from our rich catalog of books

and videos available at https://github.com/PacktPublishing. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this book.
You can download it here: https://packt.link/gbp/9781836206910.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter/X handles. For example: “Execute

the terraform graph command.”

A block of code is set as follows:

resource "azurerm_resource_group" "rg-app" {

 name = "RG-APP-${terraform.workspace}"

 location = "westeurope"

When we wish to draw your attention to a particular part of a code block, the relevant lines or

items are set in bold:

terraform {

 backend "azurerm" {

 resource_group_name = "RG-TFBACKEND"

 storage_account_name = "storagetfbackend"

 container_name = "tfstate"

 key = "myapp.tfstate"

 access_key = xxxxxx-xxxxx-xxx-xxxxx

 }

}

Any command-line input or output is written as follows:

terraform init

https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E
https://github.com/PacktPublishing
https://packt.link/gbp/9781836206910

Prefacexxviii

Bold: Indicates a new term, an important word, or words that you see on the screen. For instance,

words in menus or dialog boxes appear in the text like this. For example: “Select System info from

the Administration panel.”

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book’s title in the subject of

your message. If you have questions about any aspect of this book, please email us at questions@

packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do

happen. If you have found a mistake in this book, we would be grateful if you reported this to us.

Please visit http://www.packtpub.com/submit-errata, click Submit Errata, and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would

be grateful if you would provide us with the location address or website name. Please contact us

at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you

are interested in either writing or contributing to a book, please visit http://authors.packtpub.

com/.

Warnings or important notes appear like this..

Tips and tricks appear like this.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/
http://authors.packtpub.com/

Preface xxix

Share your thoughts
Once you’ve read Amazon Redshift Cookbook, we’d love to hear your thoughts! Please click here to

go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re deliv-

ering excellent quality content.

https://packt.link/r/1836206917
https://packt.link/r/1836206917

Prefacexxx

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical

books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free

content in your inbox daily.

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below:

https://packt.link/free-ebook/9781836206910

2. Submit your proof of purchase.

3. That’s it! We’ll send your free PDF and other benefits to your email directly.

https://packt.link/free-ebook/9781836206910

1
Getting Started with Amazon
Redshift

Amazon Redshift is a fast, fully managed, petabyte-scale data warehouse service that makes it

simple and cost-effective to efficiently analyze all your data using your existing business intel-
ligence tools. It is optimized for datasets ranging from a few hundred gigabytes to a petabyte

or more and costs less than $1,000 per terabyte per year, a tenth of the cost of most traditional

data warehousing solutions. Amazon Redshift integrates into the data lake solution though the

lakehouse architecture, allowing you to access all the structured and semi-structured data in one

place. Each Amazon Redshift data warehouse is hosted as either a provisioned cluster or serverless.

The Amazon Redshift provisioned data warehouse consists of one leader node and a collection

of one or more compute nodes, which you can scale up or down as needed. The Amazon Red-

shift serverless data warehouse’s resources are automatically provisioned, and data warehouse

capacity is intelligently scaled based on workload patterns. This chapter walks you through the

process of creating a sample Amazon Redshift resource and connecting to it from different clients.

The following recipes are discussed in this chapter:

• Creating an Amazon Redshift Serverless data warehouse using the AWS console

• Creating an Amazon Redshift provisioned cluster using the AWS console

• Creating an Amazon Redshift Serverless cluster using AWS CloudFormation

• Creating an Amazon Redshift provisioned cluster using AWS CloudFormation

• Connecting to a data warehouse using Amazon Redshift query editor v2

• Connecting to Amazon Redshift using the SQL Workbench/J client

Getting Started with Amazon Redshift2

• Connecting to Amazon Redshift using Jupyter Notebook

• Connecting to Amazon Redshift programmatically using Python and the Redshift API

• Connecting to Amazon Redshift using the command line (psql)

Technical requirements

Here is a list of the technical requirements for this chapter:

• An AWS account.

• The AWS administrator should create an IAM user by following Recipe 1 in the Appendix.

This IAM user will be used to execute all the recipes.

• The AWS administrator should deploy the AWS CloudFormation template to attach the

IAM policy to the IAM user, which will give them access to Amazon Redshift, Amazon

SageMaker, Amazon EC2, AWS CloudFormation, and AWS Secrets Manager. The template

is available here: https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-

2E/blob/main/Chapter01/chapter_1_CFN.yaml.

• Client tools such as SQL Workbench/J, an IDE, and a command-line tool.

• Ensure your clients have network access to the VPC in which the Amazon Redshift data

warehouse is deployed: https://docs.aws.amazon.com/redshift/latest/mgmt/

managing-clusters-vpc.html.

• The code files for the chapter can be found here: https://github.com/PacktPublishing/
Amazon-Redshift-Cookbook-2E/tree/main/Chapter01.

Creating an Amazon Redshift Serverless data
warehouse using the AWS Console
The AWS Management Console allows you to interactively create an Amazon Redshift serverless

data warehouse via a browser-based user interface. Once the data warehouse has been created,

you can use the Console to monitor its health and diagnose query performance issues from a

unified dashboard. In this recipe, you will learn how to use the unified dashboard to deploy a
Redshift serverless.

https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter01/chapter_1_CFN.yaml
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter01/chapter_1_CFN.yaml
https://docs.aws.amazon.com/redshift/latest/mgmt/managing-clusters-vpc.html
https://docs.aws.amazon.com/redshift/latest/mgmt/managing-clusters-vpc.html
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/tree/main/Chapter01
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/tree/main/Chapter01

Chapter 1 3

Getting ready
To complete this recipe, you will need:

• An existing or new AWS Account. If new AWS accounts need to be created, go to https://

portal.aws.amazon.com/billing/signup, enter the information, and follow the steps

on the site.

• An IAM user with access to Amazon Redshift.

How to do it…
The following steps will enable you to create a cluster with minimal parameters:

1. Navigate to the AWS Management Console and select Amazon Redshift, https://console.

aws.amazon.com/redshiftv2/.

2. Choose the AWS Region (eu-west-1) or the corresponding region at the top right of the

screen and then click Next.

3. On the Amazon Redshift console, in the left navigation pane, choose Serverless Dashboard,

and then click Create workgroup, as shown in Figure 1.1:

Figure 1.1 – Creating an Amazon Redshift Serverless workgroup

4. In the Workgroup section, type any meaningful Workgroup Name like my-redshift-wg.

https://portal.aws.amazon.com/billing/signup
https://portal.aws.amazon.com/billing/signup
https://console.aws.amazon.com/redshiftv2/
https://console.aws.amazon.com/redshiftv2/

Getting Started with Amazon Redshift4

5. In the Performance and cost controls section, you can choose the compute capacity for

the workgroup. You have two options to choose from:

• Price-performance target (recommended): This option allows Amazon Redshift

Serverless to learn your workload patterns by analyzing factors such as query com-

plexity and data volumes. It automatically adjusts compute capacity throughout

the day based on your needs. You can set your price-performance target using a

slider:

• Left: Optimizes for cost

• Middle: Balances cost and performance

• Right: Optimizes for performance

Figure 1.2 – Price performance target option

• Base capacity: With this option, you will choose a static base compute capac-

ity for the workgroup. Use this option only if you believe that you understand

the workload characteristics well and want control of the compute capacity.

Using the drop-down for Base capacity, you can choose a number for Redshift

processing units (RPUs) between 8 and 1024, as shown in the following screenshot.

RPU is a measure of compute capacity.

Chapter 1 5

Figure 1.3 – Base capacity option

6. In the Network and security section, set IP address type to IPv4.

7. In the Network and security section, select the appropriate Virtual private cloud (VPC),

VPC security groups, and Subnet.

8. If your workload needs network traffic between your serverless database and data repos-

itories routed through a VPC instead of the internet, then enable Turn on enhanced VPC

routing by checking the box. For this book, we will leave it unchecked and then click Next.

9. In the Namespace section, select Create a new Namespace and type any meaningful name

for Namespace like my-redshift-ns.

10. In the Database name and password section, leave the defaults as is, which will create a

default database called dev and give the IAM credentials you are using as default admin

user credentials.

11. In the Permissions section, leave all the settings as default.

Getting Started with Amazon Redshift6

12. In the Encryption and security section, leave all the settings at the defaults and then

click Next.

13. In the Review and create section, validate that all the settings are correct and then click

Create.

How it works…
The Amazon Redshift serverless data warehouse consists of a namespace, which is a collection of

database objects and users, and a workgroup, which is a collection of compute resources. Name-

spaces and workgroups are scaled and billed independently. Amazon Redshift Serverless auto-

matically provisions and scales the compute capacity based on the usage, when required. You only

pay for a workgroup when the queries are run, there is no compute charge for idleness. Similarly,

you only pay for the volume of data stored in the namespace.

Creating an Amazon Redshift provisioned cluster
using the AWS Console
The AWS Management Console allows you to interactively create an Amazon Redshift provisioned

cluster via a browser-based user interface. It also recommends the right cluster configuration
based on the size of your workload. Once the cluster has been created, you can use the Console to

monitor the health of the cluster and diagnose query performance issues from a unified dashboard.

Getting ready
To complete this recipe, you will need:

• An existing or new AWS account. If new AWS accounts need to be created, go to https://

portal.aws.amazon.com/billing/signup, enter information, and follow the steps on

the site.

• An IAM user with access to Amazon Redshift.

How to do it…
The following steps will enable you to create a cluster with minimal parameters:

1. Navigate to the AWS Management Console, select Amazon Redshift, https://console.

aws.amazon.com/redshiftv2/, and browse to Provisioned clusters dashboard.

2. Choose the AWS Region (eu-west-1) or the corresponding region in the top right of the

screen.

3. On the Amazon Redshift dashboard, select CLUSTERS, then click Create cluster.

https://portal.aws.amazon.com/billing/signup
https://portal.aws.amazon.com/billing/signup
https://console.aws.amazon.com/redshiftv2/
https://console.aws.amazon.com/redshiftv2/

Chapter 1 7

4. In the Cluster configuration section, type any meaningful Cluster identifier like

myredshiftcluster.

5. Choose either Production or Free trial depending on what you plan to use this cluster.

6. If you need help determining the right size for your compute cluster, select the Help me

choose option. Alternatively, if you know the required size of your cluster (that is, the

node type and number of nodes), select I’ll choose. For example, you can choose Node

type: ra3�xlplus with Nodes: 2.

Figure 1.4 – Create Amazon Redshift provisioned cluster

7. In the Database configuration section, specify values for Database name (optional), Da-

tabase port (optional), Master user name, and Master user password. For example:

• Database name (optional): Enter dev.

• Database port (optional): Enter 5439.

• Master user name: Enter awsuser.

• Master user password: Enter a value for the password. Refer to PASSWORD pa-

rameter at https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_USER.

html#r_CREATE_USER-parameters to understand password requirements.

https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_USER.html#r_CREATE_USER-parameters
https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_USER.html#r_CREATE_USER-parameters

Getting Started with Amazon Redshift8

8. Optionally, you can configure the Cluster permissions and Additional configurations

section when you want to pick specific network and security configurations. The console
defaults to the preset configuration otherwise.

9. Choose Create cluster.

10. The cluster creation takes a few minutes to complete. Navigate to the cluster, select Query

data, and click on Query in Query Editor v2 to connect to the cluster.

Creating an Amazon Redshift Serverless cluster
using AWS CloudFormation
With an AWS CloudFormation template, you treat your infrastructure as code. This enables you

to create the Amazon Redshift cluster using json/yaml file. The declarative code in the file con-

tains the steps to create the AWS resources, and enables easy automation and distribution. This

template allows you to standardize the Amazon Redshift creation to meet your organizational

infrastructure and security standards. Further, you can distribute them to different teams within

your organization using the AWS service catalog for an easy setup. In this recipe, you will learn

how to use CloudFormation template to deploy an Amazon Redshift Serverless cluster and the

different parameters associated with it.

Getting ready
To complete this recipe, you will need:

• An IAM user with access to AWS CloudFormation, Amazon EC2, and Amazon Redshift

How to do it…
We use a CloudFormation template to create the Amazon Redshift Serverless infrastructure as

code using a JSON-based template. Follow these steps to create the Amazon Redshift using the

Cloud Formation template:

1. Download the AWS CloudFormation template from here: https://github.com/

PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter01/Create_

Amazon_Redshift_Serverless.yaml.

2. Navigate to the AWS Console, choose CloudFormation, and choose Create stack. Click

on the Template is ready and Upload a template file options, choose the download-

ed Creating_Amazon_Redshift_Serverless.yaml file from your local computer, and
click Next.

https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter01/Create_Amazon_Redshift_Serverless.yaml
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter01/Create_Amazon_Redshift_Serverless.yaml
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter01/Create_Amazon_Redshift_Serverless.yaml

Chapter 1 9

Figure 1.5 – Choose the CloudFormation template file

3. Choose the following input parameters:

a. Stack name: Enter a name for the stack, for example, myredshiftserverless.

b. NamespaceName: Enter a name for namespace, which is a collection of database

objects and users.

c. WorkgroupName: Enter a name for the workgroup, which is a collection of com-

pute resources.

d. BaseRPU: The base RPU for Redshift Serverless Workgroup ranges from 8 to 1024.

The default is 8.

e. DatabaseName: Enter a database name, for example, dev.

f. AdminUsername: Enter an admin username, for example, awsuser.

g. AdminPassword: Enter an admin user password. The password must be 8-64

characters long and must contain at least one uppercase letter, one lowercase

letter, and one number. It can include any printable ASCII character except /, "",

and @. The default is Awsuser123.

4. Click Next and Create Stack.

AWS CloudFormation has deployed all the infrastructure and configuration listed in the
template in completed and we’ll wait till the status changes to CREATE_COMPLETE.

Getting Started with Amazon Redshift10

How it works…
Let’s now see how this CloudFormation template works. The CloudFormation template is or-

ganized into three broad sections: input parameters, resources, and outputs. Let’s discuss them

one by one.

The parameters section is used to allow user input choices and also can be used to apply constraints

against its value. To create the Amazon Redshift Serverless cluster, we collect parameters such as

namespace name, workgroup name, base RPU, database name, and admin username/ password.

The parameters will later be substituted when creating the resources. Here is the Parameters

section from the template:

Parameters:

 NamespaceName:

 Description: The name for namespace, which is a collection of database

objects and users

 Type: String

 WorkgroupName:

 Description: The name for workgroup, which is a collection of compute

resources

 Type: String

 BaseRPU:

 Description: Base RPU for Redshift Serverless Workgroup.

 Type: Number

 MinValue: '8'

 MaxValue: '1024'

 Default: '8'

 AllowedValues:

 - 8

 - 512

 - 1024

 DatabaseName:

 Description: The name of the first database to be created in the

serverless data warehouse

 Type: String

 Default: dev

 AllowedPattern: ([a-z]|[0-9])+

 AdminUsername:

 Description: The user name that is associated with the admin user

Chapter 1 11

account for the serverless data warehouse

 Type: String

 Default: awsuser

 AllowedPattern: ([a-z])([a-z]|[0-9])*

 AdminPassword:

 Description: The password that is associated with the admin user

account for the serverless data warehouse. Default is Awsuser123

 Type: String

 Default: Awsuser123

 NoEcho: 'true'

 MinLength: '8'

 MaxLength: '64'

 AllowedPattern: ^(?=.*[a-z])(?=.*[A-Z])(?=.*\d)[^\x00-\x20\x22\x27\

x2f\x40\x5c\x7f-\uffff]+

In the above input section, DatabaseName is a string value that defaults to dev and also enforc-

es an alphanumeric validation when specified using the condition check of AllowedPattern:
([a-z]|[0-9])+. Similarly, BaseRPU is defaulted to 8 and allows the valid BaseRPU from a list of

values.

The Resources section contains a list of resource objects and the Amazon Serverless namespace is

invoked using AWS::RedshiftServerless::Namespace along with references to input parameters

such as NamespaceName, DbName, AdminUsername, and AdminPassword. The Amazon Serverless

Workgroup is invoked using AWS::RedshiftServerless::Workgroup along with references to

input parameters such as NamespaceName, WorkgroupName, BaseCapacity, and PublicAccessible:

Resources:

 Namespace:

 Type: AWS::RedshiftServerless::Namespace

 Properties:

 NamespaceName: !Ref NamespaceName

 AdminUsername: !Ref AdminUsername

 AdminUserPassword: !Ref AdminPassword

 DbName: !Ref DatabaseName

 Workgroup:

 Type: AWS::RedshiftServerless::Workgroup

 Properties:

 NamespaceName: !Ref NamespaceName

 WorkgroupName: !Ref WorkgroupName

Getting Started with Amazon Redshift12

 BaseCapacity: !Ref BaseRPU

 PubliclyAccessible: false

 DependsOn:

 - Namespace

The Resources section references the input section for values such as NamespaceName, WorkgroupName,

BaseRPU, and DatabaseName that will be used when the resource is created.

The Outputs section is a handy way to capture the essential information about your resources

or input parameters that you want to have available after the stack is created so you can easily

identify the resource object names that are created. For example, you can capture output such as

RedshiftServerlessEndpoint that will be used to connect into the cluster as follows:

Outputs:

RedshiftServerlessEndpoint:

 Description: Redshift Serverless endpoint

 Value:

 Fn::Join:

 - ':'

 - - Fn::GetAtt Workgroup.Endpoint.Address

 - "5439"

When authoring the template from scratch, you can take advantage of the AWS Application

Composer – an integrated development environment for authoring and validating code. Once the

template is ready, you can launch the resources by creating a stack (collection of resources), using

the AWS CloudFormation console, API, or AWS CLI. You can also update or delete it afterward.

Creating an Amazon Redshift provisioned cluster
using AWS CloudFormation
With an AWS CloudFormation template, you treat your infrastructure as code. This enables you

to create an Amazon Redshift cluster using a JSON or YAML file. The declarative code in the file
contains the steps to create the AWS resources and enables easy automation and distribution.

This template allows you to standardize the Amazon Redshift provisioned cluster creation to

meet your organizational infrastructure and security standards.

Chapter 1 13

Further, you can distribute them to different teams within your organization using the AWS service

catalog for an easy setup. In this recipe, you will learn how to use a CloudFormation template to

deploy an Amazon Redshift provisioned cluster and the different parameters associated with it.

Getting ready
To complete this recipe, you will need:

• An IAM user with access to AWS CloudFormation, Amazon EC2, and Amazon Redshift

How to do it…
We use the CloudFormation template to author the Amazon Redshift cluster infrastructure as

code using a JSON-based template. Follow these steps to create the Amazon Redshift provisioned

cluster using the CloudFormation template:

1. Download the AWS CloudFormation template from https://github.com/

PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter01/Creating_

Amazon_Redshift_Cluster.json.

2. Navigate to the AWS Console, choose CloudFormation, and choose Create stack�

3. Click on the Template is ready and Upload a template file options, choose the downloaded

Creating_Amazon_Redshift_Cluster.json file from your local computer, and click Next.

4. Set the following input parameters:

a. Stack name: Enter a name for the stack, for example, myredshiftcluster.

b. ClusterType: Single-node or a multiple node cluster.

c. DatabaseName: Enter a database name, for example, dev.

d. InboundTraffic: Restrict the CIDR ranges of IPs that can access the cluster.

0.0.0.0/0 opens the cluster to be globally accessible, which would be a security risk.

e. MasterUserName: Enter a database master user name, for example, awsuser.

f. MasterUserPassword: Enter a master user password. The password must be 8-64

characters long and must contain at least one uppercase letter, one lowercase letter,

and one number. It can contain any printable ASCII character except /, "", or @.

g. NodeType: Enter the node type, for example, ra3.xlplus.

h. NumberofNodes: Enter the number of compute nodes, for example, 2.

i. Redshift cluster port: Choose any TCP/IP port, for example, 5439.

https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter01/Creating_Amazon_Redshift_Cluster.json
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter01/Creating_Amazon_Redshift_Cluster.json
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter01/Creating_Amazon_Redshift_Cluster.json

Getting Started with Amazon Redshift14

5. Click Next and Create Stack.

AWS CloudFormation has deployed all the infrastructure and configuration listed in the
template in completed and we’ll wait till the status changes to CREATE_COMPLETE.

6. You can now check the outputs section in the CloudFormation stack and look for the cluster

endpoint, or navigate to the Amazon Redshift | Clusters | myredshiftcluster | General

information section to find the JDBC/ODBC URL to connect to the Amazon Redshift cluster.

How it works…

Let’s now see how this CloudFormation template works. The CloudFormation template is or-

ganized into three broad sections: input parameters, resources, and outputs. Let’s discuss them

one by one.

The Parameters section is used to allow user input choices and also can be used to apply con-

straints to the values. To create an Amazon Redshift resource, we collect parameters such as data-

base name, master username/ password, and cluster type. The parameters will later be substituted

when creating the resources. Here is an illustration of the Parameters section of the template:

"Parameters": {

 "DatabaseName": {

 "Description": "The name of the first database to be created

when the cluster is created",

 "Type": "String",

 "Default": "dev",

 "AllowedPattern": "([a-z]|[0-9])+"

 },

 "NodeType": {

 "Description": "The type of node to be provisioned",

 "Type": "String",

 "Default": "ra3.xlplus",

 "AllowedValues": [

 "ra3.16xlarge",

 "ra3.4xlarge",

 "ra3.xlplus",

]

 }

Chapter 1 15

In the previous input section, DatabaseName is a string value that defaults to dev and also en-

forces an alphanumeric validation when specified using the condition check of AllowedPattern:
([a-z]|[0-9])+. Similarly, NodeType defaults to ra3.xlplus and allows the valid NodeType from

a list of values.

The Resources section contains a list of resource objects, and the Amazon resource is invoked using

AWS::Redshift::Cluster along with references to the input parameters, such as DatabaseName,

ClusterType, NumberOfNodes, NodeType, MasterUsername, and MasterUserPassword:

"Resources": {

 "RedshiftCluster": {

 "Type": "AWS::Redshift::Cluster",

 "DependsOn": "AttachGateway",

 "Properties": {

 "ClusterType": {

 "Ref": "ClusterType"

 },

 "NumberOfNodes": {

 …

 },

 "NodeType": {

 "Ref": "NodeType"

 },

 "DBName": {

 "Ref": "DatabaseName"

 },

..

The Resources section references the input section for values such as NumberOfNodes, NodeType,

DatabaseName, that will be used during the resource creation.

The Outputs section is a handy place to capture the essential information about your resources

or input parameters that you want to have available after the stack has been created, so you can

easily identify the resource object names that are created.

Getting Started with Amazon Redshift16

For example, you can capture output such as ClusterEndpoint that will be used to connect into

the cluster as follows:

"Outputs": {

 "ClusterEndpoint": {

 "Description": "Cluster endpoint",

 "Value": {

 "Fn::Join": [

 ":",

 [

 {

 "Fn::GetAtt": [

 "RedshiftCluster",

 "Endpoint.Address"

]

 },

 {

 "Fn::GetAtt": [

 "RedshiftCluster",

 "Endpoint.Port"

]

 }

]

]

 }

 }

When authoring the template from scratch, you can take advantage of the AWS Application

Composer – an integrated development environment for authoring and validating code. Once

the template is ready, you can launch the resources by creating a stack (collection of resources)

or using the AWS CloudFormation console, API, or AWS CLI. You can also update or delete the

template afterward.

Chapter 1 17

Connecting to a data warehouse using Amazon
Redshift query editor v2
The query editor v2 is a client browser-based interface available on the AWS Management Con-

sole for running SQL queries on Amazon Redshift Serverless or provisioned cluster directly. Once

you have created the data warehouse, you can use query editor to jumpstart querying the cluster

without needing to set up the JDBC/ODBC driver. This recipe explains how to use query editor

to access a Redshift data warehouse.

Query editor V2 allows you to do the following:

• Explore schemas

• Run multiple DDL and DML SQL commands

• Run single/multiple select statements

• View query execution details

• Save a query

• Download a query result set up to 100 MB in CSV, text, or HTML

Getting ready
To complete this recipe, you will need:

• An Amazon Redshift data warehouse (serverless or provisioned cluster)

• IAM user with access to Amazon Redshift and AWS Secrets Manager

• Store the database credentials in Amazon Secrets Manager using Recipe 2 in the Appendix

How to do it…
Here are the steps to query an Amazon Redshift data warehouse using the Amazon Redshift

query editor v2.

1. Navigate to AWS Redshift Console https://console.aws.amazon.com/redshiftv2 and

select the query editor v2 from the navigation pane on the left.

2. Choose the AWS Region (eu-west-1) or corresponding region on the top right of the screen.

https://console.aws.amazon.com/redshiftv2

Getting Started with Amazon Redshift18

3. With query editor v2, all the Redshift data warehouses, both serverless and provisioned

clusters, are listed on the console. Select the dots beside the cluster name and click Create

connection:

Figure 1.6 – Creating a connection in query editor v2

4. In the connection window, select Other ways to connect, and then select AWS Secrets

Manager:

Chapter 1 19

Figure 1.7 – Connection options in query editor v2

5. In the Secret section, click on Choose a secret, select the correct secret, and click on Create

connection.

6. Now that you have successfully connected to the Redshift database, type the following

query in the query editor:

SELECT current_user;

7. Then you can click on Run to execute the query.

The results of the query will appear in the Query Results section. You are now connected to the

Amazon Redshift data warehouse and ready to execute more queries.

Getting Started with Amazon Redshift20

Connecting to Amazon Redshift using SQL
Workbench/J client
There are multiple ways to connect to the Amazon Redshift data warehouse, but one of the most

popular options is to connect using a UI based tool. SQL Workbench/J is a free cross-platform

SQL query tool, which can be used to connect using your own local client.

Getting ready
To complete this recipe, you will need:

• An Amazon Redshift data warehouse (serverless or provisioned cluster) and its login

credentials (username and password).

• Install SQL Workbench/J (https://www.sql-workbench.eu/manual/install.html).

• Download Amazon Redshift Driver. Visit https://docs.aws.amazon.com/redshift/

latest/mgmt/configuring-connections.html to download the latest driver version.

• Modify the security group attached to the Amazon Redshift cluster to allow connection

from a local client.

• For provisioned clusters, navigate to Amazon Redshift | Provisioned clusters dashboard

| myredshiftcluster | General information to find the JDBC/ODBC URL to connect to an
Amazon Redshift provisioned cluster.

• For Serverless, navigate to Amazon Redshift | Redshift Serverless | myredshiftwg | Gen-

eral information to find the JDBC/ODBC URL to connect to Amazon Redshift serverless
clusters.

How to do it…
The following steps will enable you to connect using the SQL Workbench/J client tool from your

computer:

1. Open SQL Workbench/J by double-clicking on the SQLWorkbench.exe (on Windows) or

SQLWorkbenchJ application (on Mac).

2. In the SQL Workbench/J menu, select File and then select Connect window.

3. Select Create a new connection profile.

4. In the New profile box, choose any profile name, such as examplecluster_jdbc.

https://www.sql-workbench.eu/manual/install.html
https://docs.aws.amazon.com/redshift/latest/mgmt/configuring-connections.html
https://docs.aws.amazon.com/redshift/latest/mgmt/configuring-connections.html

Chapter 1 21

5. Select Manage Drivers. The Manage Drivers dialog will open; select Amazon Redshift:

Figure 1.8 – SQL Workbench/J Manage drivers box

6. Select the folder icon adjacent to the Library box, browse and point it to the Amazon

Redshift driver location, and then select Choose:

Figure 1.9 – SQL Workbench/J to select Amazon Redshift driver

Getting Started with Amazon Redshift22

7. To set up the profile for the Amazon Redshift connection, enter the following details:

1. In the Driver box, select the Amazon Redshift drive.

2. In URL, paste the Amazon Redshift cluster JDBC URL obtained previously.

3. In Username, enter the username (or the master user name) associated with the

cluster.

4. In Password, provide the password associated with the username.

5. Checkmark the Autocommit box.

6. Select the Save profile list icon, as shown in the following screenshot, and select OK:

Figure 1.10 – Amazon Redshift Connection Profile

8. After setting up the JDBC connection, you can use the query to ensure you are connected

to the Amazon Redshift cluster:

select * from information_schema.tables;

Chapter 1 23

A list of records will appear in the Results tab if the connection was successful:

Figure 1.11 – Sample query output from SQL Workbench/J

Connecting to Amazon Redshift using Jupyter
Notebook
The Jupyter Notebook is an interactive web application that enables you to analyze your data

interactively. Jupyter Notebook is widely used by users such as business analysts and data sci-

entists to perform data wrangling and exploration. Using Jupyter Notebook, you can access all

the historical data available in an Amazon Redshift data warehouse (serverless or provisioned

cluster) and combine that with data in many other sources, such as an Amazon S3 data lake. For

example, you might want to build a forecasting model based on historical sales data in Amazon

Redshift combined with clickstream data available in the data lake. Jupyter Notebook is the tool

of choice due to the versatility it provides with exploration tasks and the strong support from

the open source community. This recipe covers the steps to connect to an Amazon Redshift data

warehouse using Jupyter Notebook.

Getting Started with Amazon Redshift24

Getting ready
To complete this recipe, you will need:

• An IAM user with access to Amazon Redshift, Amazon EC2, and Amazon Secrets Manager.

• An Amazon Redshift data warehouse (serverless or provisioned cluster) in a VPC. For more

information, visit https://docs.aws.amazon.com/redshift/latest/mgmt/getting-

started-cluster-in-vpc.html.

• A notebook instance (such as Amazon SageMaker) running the Jupyter Notebook in the

same VPC as Amazon Redshift (https://docs.aws.amazon.com/sagemaker/latest/dg/

howitworks-create-ws.html).

• Modify the security group attached to the Amazon Redshift cluster to allow connection

from the Amazon SageMaker notebook instance.

• Store the database credentials in Amazon Secrets Manager using Recipe 2 in Appendix.

How to do it…
The following steps will help you connect to an Amazon Redshift cluster using an Amazon Sage-

Maker notebook:

1. Open the AWS Console and navigate to the Amazon SageMaker service.

2. Navigate to your notebook instance and open JupyterLab. When using the Amazon Sage-

Maker notebook, find the notebook instance that was launched and click on the Open

JupyterLab link, as shown in the following screenshot:

Figure 1.12 – Navigating to JupyterLab using the AWS Console

https://docs.aws.amazon.com/redshift/latest/mgmt/getting-started-cluster-in-vpc.html
https://docs.aws.amazon.com/redshift/latest/mgmt/getting-started-cluster-in-vpc.html
https://docs.aws.amazon.com/sagemaker/latest/dg/howitworks-create-ws.html
https://docs.aws.amazon.com/sagemaker/latest/dg/howitworks-create-ws.html

Chapter 1 25

3. Now, let’s install the Python driver libraries to connect to Amazon Redshift using the

following code in the Jupyter Notebook. Set the kernel as conda_python3:

!pip install psycopg2-binary

boto3 is optional, but recommended to leverage the AWS Secrets

Manager storing the credentials Establishing a Redshift Connection

!pip install boto3

4. Grant the Amazon SageMaker instance permission to use the stored secret. On the AWS

Secrets Manager console, click on your secret and find the Secret ARN. Replace the ARN
information in the resource section with the following JSON code:

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Effect": "Allow",

 "Action": [

 "secretsmanager:GetResourcePolicy",

 "secretsmanager:GetSecretValue",

 "secretsmanager:DescribeSecret",

 "secretsmanager:ListSecretVersionIds"

],

 "Resource": [

 "arn:aws:secretsmanager:eu-west-

1:123456789012:secret:aes128-1a2b3c"

]

 }

]

}

Important Note

You can connect to an Amazon Redshift cluster using Python libraries such

as Psycopg (https://pypi.org/project/psycopg2-binary/) or pg

(https://www.postgresql.org/docs/7.3/pygresql.html) to connect to

the Notebook. Alternatively, you can also use a JDBC, but for ease of scripting

with Python, the following recipes will use either of the preceding libraries.

Getting Started with Amazon Redshift26

5. Now, attach this policy as an inline policy to the execution role for your SageMaker note-

book instance. To do this, follow these steps:

a. Navigate to the Amazon SageMaker (https://us-west-2.console.aws.amazon.

com/sagemaker/) console.

b. Select Notebook Instances.

c. Click on your notebook instance (the one running this notebook, most likely).

d. Under Permissions and Encryption, click on the IAM role link.

e. You should now be on an IAM console that allows you to Add inline policy. Click

on the link.

f. On the Create Policy page that opens, click JSON and replace the JSON lines that

appear with the preceding code block.

g. Click Review Policy.

h. On the next page select a human-friendly name for the policy and click Create

policy.

6. Finally, paste the ARN for your secret in the following code block of the Jupyter Notebook

to connect to the Amazon Redshift cluster:

Put the ARN of your AWS Secrets Manager secret for your redshift

cluster here:

secret_arn="arn:aws:secretsmanager:eu-west-

1:123456789012:secret:aes128-1a2b3c"

This will get the secret from AWS Secrets Manager.

import boto3

import json

session = boto3.session.Session()

client = session.client(

 service_name='secretsmanager'

)

get_secret_value_response = client.get_secret_value(

 SecretId=secret_arn

)

if 'SecretString' in get_secret_value_response:

 connection_info = json.loads(get_secret_value_

response['SecretString'])

https://us-west-2.console.aws.amazon.com/sagemaker/
https://us-west-2.console.aws.amazon.com/sagemaker/

Chapter 1 27

else:

 print("ERROR: no secret data found")

Sanity check for credentials

expected_keys = set(['user', 'password', 'host', 'database',

'port'])

if not expected_keys.issubset(connection_info.keys()):

 print("Expected values for ",expected_keys)

 print("Received values for ",set(connection_info.keys()))

 print("Please adjust query or assignment as required!")

jdbc:redshift://HOST:PORT/DBNAME

import time

import psycopg2

database = "dev"

con=psycopg2.connect(

 dbname = database,

 host = connection_info["host"],

 port = connection_info["port"],

 user = connection_info["username"],

 password = connection_info["password"]

)

7. Run basic queries against the database. These queries make use of the cursor class to

execute a basic query in Amazon Redshift:

cur = con.cursor()

cur.execute("SELECT sysdate")

res = cur.fetchall()

print(res)

cur.close()

8. Optionally, you can use the code here to connect to Amazon Redshift using Amazon Sage-

Maker notebook: https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-

2E/blob/main/Chapter01/Connecting_to_AmazonRedshift_using_JupyterNotebook.

ipynb.

https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter01/Connecting_to_AmazonRedshift_using_JupyterNotebook.ipynb
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter01/Connecting_to_AmazonRedshift_using_JupyterNotebook.ipynb
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter01/Connecting_to_AmazonRedshift_using_JupyterNotebook.ipynb

Getting Started with Amazon Redshift28

Connecting to Amazon Redshift programmatically
using Python and the Redshift Data API
Python is widely used for data analytics due to its simplicity and ease of use. We will use Python

to connect using the Amazon Redshift Data API.

The Data API allows you to access Amazon Redshift without using the JDBC or ODBC drivers. You

can execute SQL commands on an Amazon Redshift data warehouse (serverless or provisioned

cluster), invoking a secure API endpoint provided by the Data API. The Data API ensures the SQL

queries to be submitted asynchronously. You can now monitor the status of the query and retrieve

your results at a later time. The Data API is supported by the major programming languages, such

as Python, Go, Java, Node.js, PHP, Ruby, and C++, along with the AWS SDK.

Getting ready
To complete this recipe, you will need:

• An IAM user with access to Amazon Redshift, Amazon Secrets Manager, and Amazon EC2.

• Store the database credentials in Amazon Secrets Manager using Recipe 2 in Appendix.

• Linux machine terminal such as Amazon EC2, deployed in the same VPC as the Amazon

Redshift cluster.

• Python 3.6 or higher version installed on the Linux instance where you can write and

execute the code. If you have not installed Python, you can download it from https://

www.python.org/downloads/.

• Install AWS SDK for Python (Boto3) on the Linux instance. You can see the getting started

guide at https://aws.amazon.com/sdk-for-python/.

• Modify the security group attached to the Amazon Redshift cluster to allow connections

from the Amazon EC2 Linux instance, which will allow it to execute the Python code.

• Create a VPC endpoint for Amazon Secrets Manager and allow the security group to allow

the Linux instance to access the Secrets Manager VPC endpoint.

https://www.python.org/downloads/
https://www.python.org/downloads/
https://aws.amazon.com/sdk-for-python/

Chapter 1 29

How to do it…
Follow these steps to use a Linux terminal to connect to Amazon Redshift using Python:

1. Open the Linux terminal and install the latest AWS SDK for Python (Boto3) using the

following command:

pip install boto3

2. Next, we will write the Python code. Type python on the Linux terminal and start typing

the following code. We will first import the boto3 package and establish a session:

import boto3

import json

redshift_cluster_id = "myredshiftcluster"

redshift_database = "dev"

aws_region_name = "eu-west-1"

secret_arn="arn:aws:secretsmanager:eu-west-

1:123456789012:secret:aes128-1a2b3c"

def get_client(service, aws_region_name):

 import botocore.session as bc

 session = bc.get_session()

 s = boto3.Session(botocore_session=session, region_name=region)

 return s.client(service)

3. You can now create a client object from the boto3.Session object using RedshiftData:

rsd = get_client('redshift-data')

4. We will execute a SQL statement to get the current date by using the secrets ARN to retrieve

credentials. You can execute DDL or DML statements. The query execution is asynchronous

in nature. When the statement is executed, it returns ExecuteStatementOutput, which

includes the statement ID:

resp = rsd.execute_statement(

 SecretArn= secret_arn

 ClusterIdentifier=redshift_cluster_id,

 Database= redshift_database,

 Sql="SELECT sysdate;"

)

Getting Started with Amazon Redshift30

queryId = resp['Id']

print(f"asynchronous query execution: query id {queryId}")

5. Check the status of the query using describe_statement and the number of records

retrieved:

stmt = rsd.describe_statement(Id=queryId)

desc = None

while True:

 desc = rsd.describe_statement(Id=queryId)

 if desc["Status"] == "FINISHED":

 break

 print(desc["ResultRows"])

6. You can now retrieve the results of the above query using get_statement_result. get_

statement_result returns a JSON-based metadata and result that can be verified using
the below statement:

if desc and desc["ResultRows"] > 0:

 result = rsd.get_statement_result(Id=queryId)

 print("results JSON" + "\n")

 print(json.dumps(result, indent = 3))

The complete script for the above Python code is also available at https://github.com/

PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter01/Python_Connect_

to_AmazonRedshift.py. It can be executed as python Python_Connect_to_AmazonRedshift.py.

Connecting to Amazon Redshift using Command Line
(psql)
PSQL is a command line front-end to PostgreSQL. It enables you to query the data in an Amazon

Redshift data warehouse (serverless or provisioned cluster) interactively. In this recipe, we will

see how to install psql and run interactive queries.

Note

The query results are available for retrieval only for 24 hours.

https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter01/Python_Connect_to_AmazonRedshift.py
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter01/Python_Connect_to_AmazonRedshift.py
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter01/Python_Connect_to_AmazonRedshift.py

Chapter 1 31

Getting ready
To complete this recipe, you will need:

• Install psql (comes with PostgreSQL). To learn more about using psql, you can refer to

https://www.postgresql.org/docs/8.4/static/app-psql.html. Based on your op-

erating system, you can download the corresponding PostgreSQL binary from https://

www.postgresql.org/download/.

• If you are using Windows, set the PGCLIENTENCODING environment variable to UTF-8 using

the following command using the Windows command-line interface:

set PGCLIENTENCODING=UTF8

• Capture the Amazon Redshift login credentials.

• Modify the security group attached to the Amazon Redshift cluster to allow connection

from the server or client running the psql application, which will allow access to execute

the psql code.

How to do it…
The following steps will let you connect to Amazon Redshift through a command-line interface:

1. Open the command-line interface and type psql to make sure it is installed.

2. Provide the connection credentials as shown in the following command line to connect

to Amazon Redshift:

C:\Program Files\PostgreSQL\10\bin> .\psql -h cookbookcluster-

2ee55abd.cvqfeilxsadl.eu-west-1.redshift.amazonaws.com -d dev -p

5439 -U dbuser

Password for user dbuser:

Type "help" for help.

dev=# help

You are using psql, the command-line interface to PostgreSQL.

Type: \copyright for distribution terms

 \h for help with SQL commands

 \? for help with psql commands

 \g or terminate with semicolon to execute query

 \q to quit

https://www.postgresql.org/docs/8.4/static/app-psql.html
https://www.postgresql.org/download/
https://www.postgresql.org/download/

Getting Started with Amazon Redshift32

To connect to Amazon Redshift using the psql command line, you will need the clusters

endpoint, the database username, and the port. You can use the following command to

connect to the Redshift data warehouse:

psql -h <clusterendpoint> -U <dbuser> -d <databasename> -p <port>

3. To check the database connection, you can use a sample query as specified in the follow-

ing command:

dev=# select sysdate;

You are now successfully connected to the Amazon Redshift data warehouse and ready to run

the SQL queries!

2
Data Management

Amazon Redshift is a data warehousing service optimized for online analytical processing (OLAP)

applications. You can start with just a few hundred gigabytes (GB) of data and scale to a petabyte

(PB) or more while maintaining high performance and cost-effectiveness. Its columnar storage

architecture is specifically designed for large-scale analytics workloads, storing data by column
rather than row. This approach is particularly efficient for OLAP operations as it allows Redshift
to read only the specific columns needed for analysis, significantly improving query performance
for operations like aggregations, trend analysis, and historical data comparisons. The columnar

design also enables better data compression since similar data types are stored together, reduc-

ing storage costs and enhancing input/output (I/O) performance. By designing your database to

take advantage of this columnar architecture, you can maximize the efficiency of your analytical
processing workloads and achieve optimal performance for your data warehouse operations.

Amazon Redshift is best suited for dimensional data modeling, particularly star schemas, snow-

flake schemas, denormalized tables, etc., which are optimized for analytical querying and report-

ing. An analytical schema forms the foundation of your data model. This chapter explores how

you can set up this schema, thus enabling optimal querying using standard Structured Query

Language (SQL) and easy administration of access controls.

The following recipes are discussed in this chapter:

• Managing a database in Amazon Redshift

• Managing a schema in a database

• Managing tables in a database

• Managing views in a database

Data Management34

• Managing materialized views in a database

• Managing stored procedures in a database

• Managing UDFs in a database

Technical requirements
In order to complete all the recipes in this chapter, you will need an Amazon Redshift data ware-

house (either serverless or provisioned cluster) deployed, and a SQL client of your choice to access

Amazon Redshift (for example, Amazon Redshift Query Editor V2, DBeaver, SQL Workbench/J,

DataGrip, etc.).

Managing a database in Amazon Redshift
Amazon Redshift consists of at least one database, and it is the highest level in the namespace

hierarchy for the database objects. This recipe will guide you through the steps needed to create

and manage a database in an Amazon Redshift data warehouse.

Getting ready
To complete this recipe, you will need everything mentioned in the Technical requirements section

at the start of the chapter.

How to do it…
Let’s now set up and configure a database on Amazon Redshift. Use the SQL client to connect to
it and execute the following commands:

1. We will create a new database called qa in the Amazon Redshift data warehouse that

has the owner awsuser and accepts a maximum of 50 connections. To do this, use the

following code:

CREATE DATABASE qa

WITH

OWNER awsuser

CONNECTION LIMIT 50;

OWNER and CONNECTION LIMIT are optional parameters. You can find the complete list
of options available for database creation at this link: https://docs.aws.amazon.com/

redshift/latest/dg/r_CREATE_DATABASE.html.

https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_DATABASE.html
https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_DATABASE.html

Chapter 2 35

2. To view the details of the qa database, you can query PG_DATABASE_INFO, as shown in the

following code snippet:

SELECT datname, datdba, datconnlimit

FROM pg_database_info

WHERE datname= 'qa';

This is the expected output. It has the database name, the user ID for the database admin,

and the connection limit for the database:

datname datdba datconnlimit

qa 100 50

This query will list the databases that exist in Redshift. If a database is successfully created,

it will show up in the query result.

3. To make changes to the database—such as the database name, owner, or connection

limit—use the following command, replacing <qauser> with the respective Amazon Red-

shift username:

/* Change database name */

ALTER DATABASE qa RENAME TO prod;

/* Change database owner */

ALTER DATABASE qa owner to <qauser>;

/* Change database connection limit */

ALTER DATABASE qa CONNECTION LIMIT 100;

4. To verify that the changes have been successfully completed, you can query PG_DATABASE_

INFO, as shown in the following code snippet:

SELECT datname, datdba, datconnlimit

FROM pg_database_info

WHERE datname = 'qa';

This is the expected output:

datname datdba datconnlimit

prod 100 100

Data Management36

5. You can connect to the prod database using the connection endpoint, as follows:

<RedshiftHostname>:<Port>/prod

Here, prod refers to the database you would like to connect to.

6. To drop the previously created database, execute the following query:

DROP DATABASE prod;

Managing a schema in a database
In Amazon Redshift, a schema is a namespace that groups database objects such as tables, views,

stored procedures, and so on. Organizing database objects in a schema is good for security mon-

itoring, and it also means objects are logically grouped. In this recipe, we will create a sample

schema that will be used to hold all the database objects.

Getting ready
To complete this recipe, you will need the following:

• Access to any SQL interface, such as Query Editor V2 or a local SQL client

• An Amazon Redshift data warehouse (serverless or provisioned cluster) endpoint

• Log in as a superuser into an Amazon Redshift cluster

How to do it…
1. Users can create a schema using the CREATE SCHEMA (https://docs.aws.amazon.com/

redshift/latest/dg/r_CREATE_SCHEMA.html) command. The following steps will enable

you to set up a schema with the name finance and add the necessary access to the groups:

2. User groups are a collection of users. They are typically used to group users who would

need the same permissions on database objects. It is common to see organization roles

such as developers, analysts, and data scientists as groups. Another common grouping

pattern is one group per organization, such as finance, audit, and so on.

Create finance_grp, audit_grp, and finance_admin_user groups using the following

SQL statements:

create group finance_grp;

create group audit_grp;

create user finance_admin_usr with password

'<PasswordOfYourChoice>';

https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_SCHEMA.html
https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_SCHEMA.html

Chapter 2 37

3. Create a schema named finance with a space quota of 2 TB, with a finance_admin_usr

schema owner:

CREATE schema finance authorization finance_admin_usr QUOTA 2 TB;

You can also modify or drop existing schemas using the ALTER SCHEMA (https://docs.aws.

amazon.com/redshift/latest/dg/r_ALTER_SCHEMA.html) and DROP SCHEMA (https://

docs.aws.amazon.com/redshift/latest/dg/r_DROP_SCHEMA.html) statements, respec-

tively.

4. For the finance schema, grant access privileges of USAGE and ALL to the finance_grp

group. Further, grant read access to the tables in the schema using a SELECT privilege for

the audit_grp group:

GRANT USAGE on SCHEMA finance TO GROUP finance_grp;

GRANT USAGE on SCHEMA finance TO GROUP audit_grp;

GRANT ALL ON schema finance to GROUP finance_grp;

GRANT SELECT ON ALL TABLES IN SCHEMA finance TO GROUP audit_grp;

USAGE grants permission on a specific schema, which makes objects in that schema acces-

sible to users. Specific actions on these objects must be granted separately (for example,
SELECT or UPDATE permission on tables). ALL grants all the possible privileges on the

schema (i.e., CREATE, USAGE, ALTER, or DROP).

5. You can verify that the schema and owner group have been created by using the following

code:

select nspname as schema, usename as owner

from pg_namespace, pg_user

where pg_namespace.nspowner = pg_user.usesysid

and pg_namespace.nspname ='finance';

6. Create a foo table within the schema by prefixing the schema name along with the table,
as shown in the following command:

CREATE TABLE finance.foo (bar int);

7. Now, in order to select the foo table from the finance schema, you will have to prefix the
schema name along with the table, as shown in the following command:

select * from finance.foo;

The preceding SQL code will not return any rows as we haven’t loaded any data into foo.

https://docs.aws.amazon.com/redshift/latest/dg/r_ALTER_SCHEMA.html
https://docs.aws.amazon.com/redshift/latest/dg/r_ALTER_SCHEMA.html
https://docs.aws.amazon.com/redshift/latest/dg/r_DROP_SCHEMA.html
https://docs.aws.amazon.com/redshift/latest/dg/r_DROP_SCHEMA.html

Data Management38

8. Assign a search path to conveniently reference the database objects directly using sin-

gle-part notation, like select * from foo;, instead of requiring the use of two-part

notation, like select * from finance.foo;. The following command sets the search

path to '$user', finance, public. When searching for objects not specified with a
schema name, Amazon Redshift follows the search path. It looks through the schemas

in the order listed in the search path until it finds the object.

set search_path to '$user', finance, public;

You can configure the search path by using the set search_path command at the current

session level or the user level.

9. Now, executing the following SELECT query without the schema qualifier automatically
locates the foo table in the finance schema:

select * from foo;

The preceding SQL code will not return any rows.

Now, the new finance schema is ready for use and you can keep creating new database objects

in this schema.

Managing tables in a database
In Amazon Redshift, you can create a collection of tables within a schema with related entities and

attributes. Working backward from your business requirements, you can use different modeling

techniques to create tables in Amazon Redshift. You can choose a star or snowflake schema by

using normalized, denormalized, or data vault data modeling techniques.

Important note

A database is automatically created by default with a PUBLIC schema. Identical da-

tabase object names can be used in different schemas of the database. For example,

finance.customer and marketing.customer are valid table definitions that can
be created without any conflict, where finance and marketing are schema names

and customer is the table name. Schemas serve the key purpose of easy management

through this logical grouping—for example, you can grant SELECT access to all the

objects at a schema level instead of individual tables.

Chapter 2 39

In this recipe, we will create tables in the finance schema, insert data into those tables, and cover

the key concepts to leverage the massively parallel processing (MPP) and columnar architecture.

Getting ready
To complete this recipe, you will need everything mentioned in the Technical requirements section

at the start of the chapter.

How to do it…
Let’s explore how to create tables in Amazon Redshift:

1. Let’s create a customer table in the finance schema with the customer_number, first_

name, last_name, and date_of_birth attributes:

CREATE TABLE finance.customer

(

 customer_number INTEGER,

 first_name VARCHAR(50),

 last_name VARCHAR(50),

 date_of_birth DATE

);

2. We will now insert 10 records into the customer table using a multi-value insert state-

ment. Using multi-row insert statements is more efficient than executing separate insert

statements for each row:

insert into finance.customer values

(1, 'foo', 'bar', '1980-01-01'),

(2, 'john', 'smith', '1990-12-01'),

 (3, 'spock', 'spock', '1970-12-01'),

 (4, 'scotty', 'scotty', '1975-02-01'),

 (5, 'seven', 'of nine', '1990-04-01'),

Note

Something key to creating a customer table is to define columns and their
corresponding data types. Amazon Redshift supports data types such as

numeric, character, date, datetime with time zone, Boolean, geometry, Hy-

perLog, log sketch, super, and so on.

Data Management40

 (6, 'kathryn', 'janeway', '1995-07-01'),

 (7, 'tuvok', 'tuvok', '1960-06-10'),

 (8, 'john', 'smith', '1965-12-01'),

 (9, 'The Doctor', 'The Doctor', '1979-12-01'),

 (10, 'B Elana', 'Torres', '2000-08-01');

3. You can now review the information about the customer table using the svv_table_info

system view. Execute the following query:

select "schema", table_id, "table", encoded, diststyle, sortkey1,

cluster size, tbl_rows

from svv_Table_info

where "table" = 'customer'

and "schema" = 'finance';

This is the expected output:

schema table_id table encoded diststyle sortkey1 size

tbl_rows

finance 167482 customer Y AUTO(ALL) AUTO(SORTKEY)

14 10

table_id is the object ID and the number of records in the table is 10. The encoded column

indicates that the table is compressed. Amazon Redshift stores columns in 1 megabyte

(MB) immutable blocks. The size of the table is 14 MB. When you created the customer

table, notice that you didn’t specify any keys. When no keys are specified, the tables will
be created with a default distribution style of AUTO and a sort key of AUTO. AUTO indicates

that Amazon Redshift will intelligently and automatically determine the right keys for

you based on your workload pattern and update them as your workload evolves. Let’s

dive into the terminology and concepts of diststyle and sortkey:

• diststyle is a table property that dictates how that table’s data is distributed

across the data slices in your Amazon Redshift data warehouse. A data slice is a

logical partition in which data is cached in the Amazon Redshift SSD.

• KEY: The value is hashed, and the same value goes to the same location (data slice)

on the compute node.

• ALL: The full table data goes to the first slice of every compute node.

• EVEN: Uses a round-robin method to evenly spread table rows across all slices,

ensuring balanced data distribution regardless of column value.

Chapter 2 41

• AUTO: With AUTO distribution, Amazon Redshift assigns an optimal distribution

style based on the size of the table data. For example, if the AUTO distribution style

is specified, Amazon Redshift initially assigns the ALL distribution style to a small

table. When the table grows larger, Amazon Redshift might change the distribu-

tion style to KEY, choosing the primary key (or a column of the composite primary

key) as the distribution key. If the table grows larger and none of the columns are

suitable to be the distribution key, Amazon Redshift changes the distribution style

to EVEN. The change in distribution style occurs in the background with minimal

impact on user queries.

4. Let’s run a query against the customer table to list customers who were born before 1980:

select *

from finance.customer

where extract(year from date_of_birth) < 1980;

5. You can also create a copy of the permanent table using create table as(CTAS). Let’s

execute the following query to create another table for a customer born in 1980:

create table finance.customer_dob_1980 as

select *

from finance.customer

where extract(year from date_of_birth) = 1980 ;

6. You can also create temporary tables—for example, to generate IDs in a data-loading

operation. Temporary tables can only be queried during the current session and are au-

tomatically dropped when the session ends. They are created in a session-specific sche-

ma and are not visible to any other user. You can use a create temporary/temp table

command to do this. Execute the following three queries in a single session:

create temporary table #customer(custid integer IDENTITY(1,1),

customer_number integer IDENTITY(1,1));

insert into #customer (customer_number) values(1);

select * from #customer;

This is the expected output:

custid customer_number

1 1

Data Management42

7. Reconnect to Amazon Redshift using the SQL client. Reconnecting will create a new session.

Now, try to execute the following query against the #customer temporary table:

select * from #customer;

You will get an ERROR: 42P01: relation “#customer” does not exist error message as

the temporary tables are only visible to the current session.

How it works…
When you create a table in Amazon Redshift, it stores the data on disk, column by column, on 1

MB blocks. Amazon Redshift by default compresses the columns, which reduces the storage foot-

print and the input/output (I/O) when you execute a query against the table. Amazon Redshift

provides different distribution styles to spread the data across all the compute nodes, to leverage

the MPP architecture for your workload. The metadata and table summary information can be

queried using the catalog table and summary view.

Amazon Redshift stores metadata about the customer table. You can query the pg_table_def

catalog table to retrieve this information. You can execute the following query to view the table/

column structure.

See also...
Further information about distribution styles can be found at the following link:

https://docs.aws.amazon.com/redshift/latest/dg/c_choosing_dist_sort.html.

Important note

When data is inserted into a table, Amazon Redshift automatically builds, in mem-

ory, the metadata of the min and max values of each block. This metadata, known

as a zone map, is accessed before a disk scan in order to identify which blocks are

relevant to a query. Amazon Redshift does not have indexes; it does, however, have

sort keys. Sort key columns govern how data is physically sorted for a table on disk

and can be used as a lever to improve query performance. Sort keys will be covered

in depth in Chapter 8, Performance Optimization.

https://docs.aws.amazon.com/redshift/latest/dg/c_choosing_dist_sort.html

Chapter 2 43

Managing views in a database
View database objects allow the result of a query to be stored. In Amazon Redshift, views run

each time the view is mentioned in a query. The advantage of using a view instead of a table is

that it can allow access to only a subset of data on a table, join more than one table into a single

virtual table, and act as an aggregated table, and it takes up no space on the database since only

the definition is saved, hence making it convenient to abstract complicated queries. In this recipe,
we will create views to store queries for the underlying tables.

Getting ready
To complete this recipe, you will need everything mentioned in the Technical requirements section

at the start of the chapter.

How to do it…
Let’s create a view using the CREATE VIEW command. We will use the following steps to create

a view:

1. Create a finance.customer_vw view based on the results of the query on finance.

customer:

CREATE VIEW finance.customer_vw

AS

SELECT customer_number,

 first_name,

 last_name,

 EXTRACT(year FROM date_of_birth) AS year_of_birth

FROM finance.customer;

2. You can create late binding views using the WITH NO SCHEMA BINDING clause. The clause

specifies that the view isn’t bound to the underlying database objects, such as tables and
user-defined functions. As a result, there is no dependency between the view and the
objects it references. Because there is no dependency, you can drop or alter a referenced

object without affecting the view.

Data Management44

Amazon Redshift doesn’t check for dependencies until the view is queried:

CREATE VIEW finance.customer_lbvw

AS

SELECT customer_number,

 first_name,

 last_name,

 EXTRACT(year FROM date_of_birth) AS year_of_birth

FROM finance.customer

with no schema binding;

3. To verify that a view has been created, you can use the following command:

SELECT table_schema as schema_name,

 table_name as view_name,

 view_definition

FROM information_schema.views

WHERE table_schema not in ('information_schema', 'pg_catalog')

ORDER by schema_name,

 view_name;

4. We can now select directly from the finance.customer_vw view, just like with any another

database object, like so:

SELECT * from finance.customer_vw limit 5;

 Note

This script will provide an output of the views created under a particular

schema and the SQL script for the view.

Note

Here, the finance.customer_vw view abstracts the date_of_birth person-

ally identifiable information (PII) from the underlying table and provides

the user with an abstracted view of only the essential data for that year to

determine the age group.

Chapter 2 45

This is the expected output:

outputcustomer_number,first_name,last_name,year_of_birth

1 foo bar 1980

2 john smith 1990

3 spock spock 1970

4 scotty scotty 1975

5 seven of nine 1990

5. To delete the previously created view, you can use the following command:

DROP VIEW finance.customer_vw ;

Managing materialized views in a database
A materialized view is a database object that persists the results of a query to disk. In Amazon

Redshift, materialized views allow frequently used complex queries to be stored as separate da-

tabase objects, allowing you to access these database objects directly, and enabling faster query

responses.

Employing materialized views is a common approach to powering repeatable queries in a busi-

ness intelligence (BI) dashboard, and avoids expensive computation each time. Furthermore,

materialized views allow an incremental refresh of the results, using the underlying table data.

In this recipe, we will create a materialized view to query the tables and also to persist the results

for a faster fetch.

Getting ready
To complete this recipe, you will need everything mentioned in the Technical requirements section

at the start of the chapter.

How to do it…
Let’s create a materialized view using the CREATE MATERIALIZED VIEW command. We will use

the following steps to create a materialized view, in order to store the precomputed results of an

analytical query and also see how to refresh it:

1. Create a finance.customer_agg_mv materialized view using the results of the query based

on finance.customer. You can choose to add a distribution key or sort keys to materialized

views like how you can on tables. If you don’t specify it, the default distribution style is EVEN.

Data Management46

Amazon Redshift can refresh the materialized view automatically when data is updated

in the underlying data objects. Use the AUTO REFRESH clause to control this behavior. The

default for AUTO REFESH is no:

CREATE MATERIALIZED VIEW finance.customer_agg_mv

AUTO REFRESH YES

AS

SELECT

 EXTRACT(year FROM date_of_birth) AS year_of_birth,

 count(1) customer_cnt

FROM finance.customer

group by EXTRACT(year FROM date_of_birth);

2. We can now select directly from finance.customer, just like with any other database

object, like so:

select * from finance.customer limit 5;

This is the expected output:

outputyear_of_birth,customer_cnt

1975 1

1979 1

1995 1

1970 1

1965 1

3. You can verify the state of a materialized view by using an SVV_MV_INFO system table

(https://docs.aws.amazon.com/redshift/latest/dg/r_SVV_MV_INFO.html):

select * from SVV_MV_INFO where name='customer_agg_mv';

This is the expected output:

Output:

database_name,schema,name,is_stale,owner_user_

name,state,autorefresh, autorewrite

vdwpoc finance customer_agg_mv f vdwadmin 1 f t

https://docs.aws.amazon.com/redshift/latest/dg/r_SVV_MV_INFO.html

Chapter 2 47

Here, stale='f' indicates that the data is current, reflecting the customer underlying base

table. This column can be used to refresh the materialized view when needed. Another key

column in the SVV_MV_INFO table is the state column, which indicates if an incremental

refresh is possible (state=1) or not (state=0). In the materialized view, we created a

state=1 state, which indicates that a faster incremental refresh is possible.

4. Now, let’s load more data into the underlying finance.customer values using the fol-

lowing command, and check the STV_MV_INFO table:

insert into finance.customer values

(11, 'mark', 'bar', '1980-02-01'),

(12, 'pete', 'smith', '1990-2-01'),

 (13, 'woofy', 'spock', '1980-11-01'),

 (14, 'woofy jr', 'scotty', '1975-03-01'),

 (15, 'eleven', 'of nine', '1990-07-01');

5. Query the SVV_MV_INFO view again to check the status of the materialized view:

select name,is_stale,state from SVV_MV_INFO where name='customer_

agg_mv';

Output:

name,is_stale,state

customer_agg_mv t 1

Note that stale = 't' indicates that the underlying data for the materialized view has

changed, but it is possible to refresh it incrementally.

6. Refresh the materialized view using the REFRESH MATERIALIZED VIEW command and

check the status again:

REFRESH MATERIALIZED VIEW finance.customer_agg_mv;

This is the expected output:

select name,is_stale, state from SVV_MV_INFO where name='customer_

agg_mv';

Output:

name,is_stale,state

customer_agg_mv f 1

Data Management48

As we can see from the preceding code snippet, customer_agg_mv is now updated to reflect
the underlying table data.

How it works…
A materialized view can be updated with the latest data from the underlying tables by using the

REFRESH MATERIALIZED VIEW command. The owner of the materialized view can invoke a refresh

and also have SELECT access on the tables’ references in the materialized view. When the materi-

alized view is being refreshed, it executes a separate transaction to update the dataset. Amazon

Redshift also supports an autorefresh option to keep the materialized view up to date as soon as

possible after base tables change.

Amazon Redshift offers Automated Materialized Views (AutoMV) feature to enhance query per-

formance by automatically creating and managing materialized views based on workload moni-

toring and machine learning algorithms. The following are some of the key features of AutoMV:

• Continuous monitoring – Amazon Redshift continuously monitors the workload using

machine learning techniques to identify opportunities for performance improvements

through the creation of materialized views.

• Automatic creation and deletion – When the system detects that a materialized view

would be beneficial, it automatically creates and maintains it. Conversely, if a previously
created AutoMV is no longer providing performance benefits, the system will automat-

ically drop it.

• No impact on user workload – The AutoMV feature only operates during periods of low

user activity on the cluster. If you initiate a workload while an AutoMV operation is in

progress, the AutoMV task will stop to release resources for the user workload. This en-

sures that your workloads take priority over the AutoMV operations.

Your users need not be aware of AutoMV. They can continue to use the base tables and Amazon

Redshift will automatically rewrite those queries to use AutoMV to improve query performance.

Developers don’t need to revise queries to take advantage of AutoMV.

Chapter 2 49

Managing stored procedures in a database
Stored procedures in Amazon Redshift are user-created objects using the Procedural Language/

PostgreSQL (PL/pgSQL) procedural programming language. Stored procedures support both data

definition language (DDL) and data manipulation language (DML). Stored procedures can take

in input arguments but do not necessarily need to return results. PL/pgSQL also supports condi-

tional logic, loops, and case statements. Stored procedures are commonly used to build reusable

extract, transform, load (ETL) data pipelines and serve the database administrator (DBA) to

automate routine administrative activities—for example, periodically dropping unused tables.

The SECURITY attribute controls who has privileges to access certain database objects.

Stored procedures can be created with security definer controls to allow the execution of a pro-

cedure without giving access to underlying tables—for example, they can drop a table created by

another user and serve the DBA to automate administrative activities. This recipe covers managing

stored procedures in a database.

The NONATOMIC attribute controls the atomicity of the stored procedure. If you don’t specify

NONATOMIC, the default is atomic—which means that all statements in the stored procedure

must succeed, or the entire procedure rolls back. In non-atomic mode, each SQL statement within

the stored procedure executes and commits independently. If one statement fails, the previous

statements remain committed.

Getting ready
To complete this recipe, you will need everything mentioned in the Technical requirements section

at the start of the chapter.

How to do it…
In this recipe, we will start with creating a scalar Python-based UDF that will be used to parse

an Extensible Markup Language (XML) input:

1. Connect to Amazon Redshift using the SQL client, and copy and paste the following code

to create an sp_cookbook stored procedure:

Create schema cookbook;

create or replace procedure sp_cookbook(indate in date, records_out

INOUT refcursor) as

$$

declare

Data Management50

 integer_var int;

begin

 RAISE INFO 'running first cookbook storedprocedure on date %',

indate;

 drop table if exists cookbook.cookbook_tbl;

 create table cookbook.cookbook_tbl

 (recipe_name varchar(50),

 recipe_date date

);

 insert into cookbook.cookbook_tbl values('stored procedure',

indate);

 GET DIAGNOSTICS integer_var := ROW_COUNT;

 RAISE INFO 'rows inserted into cookbook_tbl = %', integer_var;

 OPEN records_out FOR SELECT * FROM cookbook.cookbook_tbl;

END;

$$ LANGUAGE plpgsql;

This stored procedure takes two parameters: indate is the input and records_out serves

as both an input and output parameter. This stored procedure uses DDL and DML state-

ments. The current user is the owner of the stored procedure and is also the owner of the

cookbook.cookbook_tbl table.

2. Now, let’s execute an sp_cookbook stored procedure using the call statement and re-

trieve the output from the resulting cursor using the fetch statement. Highlight both

statements and execute:

call sp_cookbook(current_date, 'inputcursor');

fetch all from inputcursor;

Note

Some older versions of SQL client tools may error out with unterminated

dollar-quoted string at or near “$$”. Ensure that you have the latest version

of the SQL client—for example, ensure you are using version 124 or higher

for the SQL Workbench/J client.

Chapter 2 51

This is the expected output:

Message

running first cookbook storedprocedure on date 2020-12-13

rows inserted into cookbook_tbl = 1

recipe_name recipe_date

stored procedure 2020-12-13 00:00:00

3. To view a definition of the previously created stored procedure, you can run the following
statement:

SHOW PROCEDURE sp_cookbook(indate in date, records_out INOUT

refcursor);

4. We will now create another stored procedure with a security definer privilege:

create or replace procedure public.sp_self_service(tblName in

varchar(60)) as

 $$

begin

 RAISE INFO 'running sp_self_service to drop table %', tblName;

 execute 'drop table if exists cookbook.' || tblName;

 RAISE INFO 'table dropped %', tblName;

END;

$$ LANGUAGE plpgsql

SECURITY DEFINER;

5. Let’s create a user and check whether they have permission to drop the cookbook.

cookbook_tbl table. The user1 user does not have permission to drop the table:

create user user1 with password 'Cookbook1';

grant execute on procedure public.sp_self_service(tblName in

varchar(60)) to user1;

set SESSION authorization user1;

select current_user;

drop table cookbook.cookbook_tbl;

This is the expected output:

ERROR: 42501: permission denied for schema cookbook

Data Management52

6. When user1 executes the sp_self_service stored procedure, the procedure runs with

the security of the owner of the procedure:

set SESSION authorization user1;

select current_user;

call public.sp_self_service('cookbook_tbl');

This is the expected output:

running sp_self_service to drop table cookbook_tbl

table

This allows the user to drop the table without providing the full permissions for the tables

in the cookbook schema.

How it works…
Amazon Redshift uses the PL/pgSQL procedural language to author the stored procedures. PL/

pgSQL provides programmatic access that can be used to author control structures to the SQL

language and allow complex computations. For example, you have a stored procedure that can

create users and set up necessary access that meets your organizational needs—hence, rather than

invoking several commands, this can now be done in a single step. The SECURITY access attribute

of a stored procedure defines the privileges to access the underlying database objects used. By

default, an INVOKER is used that uses the user privileges, and the SECURITY DEFINER allows the

procedure user to use the privileges of the owner.

See also...
You can find the complete reference to the PL/pgSQL procedural language at https://www.

postgresql.org/docs/8.0/plpgsql.html#PLPGSQL-ADVANTAGES. Ready-to-use stored useful

procedures can be found at https://github.com/awslabs/amazon-redshift-utils/tree/

master/src/StoredProcedures.

Managing UDFs in a database
Scalar UDF functions in Amazon Redshift are routines that are able to take parameters, perform

calculations, and return the results. UDFs are handy when performing complex calculations

that can be stored and reused in a SQL statement. Amazon Redshift supports UDFs that can be

authored using either Python or SQL. In addition, Amazon Redshift also supports AWS Lambda

UDFs, which opens up further possibilities to invoke other AWS services.

https://www.postgresql.org/docs/8.0/plpgsql.html#PLPGSQL-ADVANTAGES
https://www.postgresql.org/docs/8.0/plpgsql.html#PLPGSQL-ADVANTAGES
https://github.com/awslabs/amazon-redshift-utils/tree/master/src/StoredProcedures
https://github.com/awslabs/amazon-redshift-utils/tree/master/src/StoredProcedures

Chapter 2 53

For example, let’s say the latest customer address information is stored in AWS DynamoDB—you

can invoke an AWS Lambda UDF to retrieve this using a SQL statement in Amazon Redshift.

Getting ready
To complete this recipe, you will need the following:

• Everything mentioned in the Technical requirements section

• Access to create an Identity and Access Management (IAM) role that can invoke AWS

Lambda and attach it to Amazon Redshift

• Access to create an AWS Lambda function

How to do it…
In this recipe, we will start with a scalar Python-based UDF that will be used to parse an XML input:

1. Connect to Amazon Redshift using the SQL client, and copy and paste the following code

to create a f_parse_xml function:

CREATE OR REPLACE FUNCTION f_parse_xml

(xml VARCHAR(MAX), input_rank int)

RETURNS varchar(max)

STABLE

AS $$

 import xml.etree.ElementTree as ET

 root = ET.fromstring(xml)

 res = ''

 for country in root.findall('country'):

 rank = country.find('rank').text

 if rank == input_rank:

 res = name = country.get('name') + ':' + rank

 break

 return res

$$ LANGUAGE plpythonu;

Data Management54

2. Now, let’s validate the f_parse_xml function using the following statement, by locating

the country name that has the rank 2:

select

f_parse_xml('<data> <country name="Liechtenstein">

<rank>2</rank> <year>2008</year> <gdppc>141100</

gdppc> <neighbor name="Austria" direction="E"/>

<neighbor name="Switzerland" direction="W"/> </country></data>',

'2') as col1

This is the expected output:

col1

Liechtenstein:2

3. We will now create another AWS Lambda-based UDF. Navigate to the AWS console and

pick the Lambda service, then click on Create function, as shown in the following screen-

shot:

Figure 2.1 – Creating a Lambda function using the AWS console

Important note

The preceding Python-based UDF takes in the XML data and uses the

xml.etree.ElementTree library to parse it to locate an element, using

the input rank. See https://docs.python.org/3/library/xml.etree.

elementtree.html for more options that are available with this XML library.

https://docs.python.org/3/library/xml.etree.elementtree.html
https://docs.python.org/3/library/xml.etree.elementtree.html

Chapter 2 55

4. On the Create function screen, enter rs_lambda under Function name, choose a Python

3�6 runtime, and click on Create function.

5. Under Function code, copy and paste the following code and press the Deploy button:

import json

def lambda_handler(event, context):

 ret = dict()

 ret['success'] = True

 ret['results'] = ["bar"]

 ret['error_msg'] = "none"

 ret['num_records'] = 1

 return json.dumps(ret)

In the preceding Python-based Lambda function, a sample result is returned. This function

can further be integrated to call any other AWS service—for example, you can invoke AWS

Key Management Service (KMS) to encrypt input data.

6. Navigate to IAM and create a new role, RSInvokeLambda, using the following policy state-

ment by replacing [Your_AWS_Account_Number], [Your_AWS_Region] with your AWS

account number/Region and attaching the role to Amazon Redshift:

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Effect": "Allow",

 "Action": "lambda:InvokeFunction",

 "Resource": "arn:aws:lambda:[Your_AWS_Region]: [Your_

AWS_Account_Number]:function:rs_lambda"

 }

]

}

7. Connect to Amazon Redshift using the SQL client, and copy and paste the following code

to create a f_redshift_lambda function that links the AWS Lambda rs_lambda function:

CREATE OR REPLACE EXTERNAL FUNCTION f_redshift_lambda (bar varchar)

RETURNS varchar STABLE

LAMBDA 'rs_lambda'

Data Management56

IAM_ROLE 'arn:aws:iam::[Your_AWS_Account_Number]:role/

RSInvokeLambda';

You can validate the f_redshift_lambda function by using the following SQL statement:

select f_redshift_lambda ('input_str') as col1

--output

col1

bar

Amazon Redshift is now able to invoke the AWS Lambda function using a SQL statement.

How it works…
Amazon Redshift allows you to create a scalar UDF using either a SQL SELECT clause or a Python

program in addition to the AWS Lambda UDF illustrated in this recipe. The scalar UDFs are stored

with Amazon Redshift and are available to any user when granted the required access.

See also...
You can find a collection of several ready-to-use UDFs that can be used to implement some of
the complex reusable logic within a SQL statement at the following link: https://github.com/

aws-samples/amazon-redshift-udfs.

https://github.com/aws-samples/amazon-redshift-udfs
https://github.com/aws-samples/amazon-redshift-udfs

3
Loading and Unloading Data

Data loading and unloading are crucial processes in managing an Amazon Redshift data

warehouse. Loading refers to the ingestion of data from various sources into Redshift tables, while

unloading is the process of exporting data from Redshift to external storage or applications. In a

typical scenario, such as an ordering-system-based data warehouse, you might need to load the

entire previous day’s data rather than individual orders. While data can be loaded using standard

INSERT statements, bulk loading methods are far more efficient given the large volumes of data
warehouses typically handle. Similarly, unloading allows you to export data in bulk for use in

other applications or analysis tools. This chapter will explore various methods of loading data

into Amazon Redshift from different sources, as well as unloading data to external storage such

as Amazon S3.

There are multiple ways of loading data into an Amazon Redshift data warehouse. The most

common way is using the COPY command to load data from Amazon S3. This chapter will cover

all the different ways you will be able to load data in Amazon Redshift data warehouse (serverless

or provisioned cluster) from different sources.

The following recipes are discussed in this chapter:

• Loading data from Amazon S3 using COPY

• Loading data from Amazon DynamoDB

• Updating and inserting data

• Ingesting data from transactional sources using AWS DMS

• Cataloging and ingesting data using AWS Glue

Loading and Unloading Data58

• Streaming data to Amazon Redshift via Amazon Kinesis Data Firehose

• Unloading data to Amazon S3

Technical requirements
Here are the technical requirements to complete the recipes in this chapter:

• Access to AWS Console.

• The AWS administrator should create an IAM user and an IAM role by following Recipe 1

and Recipe 3 in Appendix. They will be used in some of the recipes in this chapter.

• The AWS administrator should deploy the AWS CloudFormation template (https://

github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter03/

chapter_3_CFN.yaml) and create two IAM policies:

• IAM policy attached to the IAM user that will give them access to Amazon Redshift,

Amazon RDS, Amazon DynamoDB, Amazon S3, and Amazon EMR

• IAM policy attached to the IAM role that will allow the Amazon Redshift data

warehouse to access Amazon S3 and Amazon DynamoDB

• Attach an IAM role to the Amazon Redshift data warehouse by following Recipe 4 in Ap-

pendix. Make a note of the IAM role name; we will use it in the recipes as [Your-Redshift_

Role].

• Amazon Redshift data warehouse deployed in AWS region eu-west-1.

• Amazon Redshift data warehouse admin user credentials.

• Access to any SQL interface, such as a SQL client or Amazon Redshift query editor V2

• Create an Amazon S3 bucket for staging and unloading the data in specific recipes. We
will use it in recipes as [Your-Amazon_S3_Bucket].

• AWS account number. We will use it in recipes as [Your-AWS_Account_Id].

Loading data from Amazon S3 using COPY
Amazon Redshift supports a number of data model structures, including dimensional,

denormalized, and aggregate (rollup) structures, which makes it optimal for analytics.

https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter03/chapter_3_CFN.yaml
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter03/chapter_3_CFN.yaml
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter03/chapter_3_CFN.yaml

Chapter 3 59

In this recipe, we will set up two separate sample datasets in Amazon Redshift that are publicly

available:

• A dimensional model using a star schema benchmark (SSB) (https://www.cs.umb.

edu/~poneil/StarSchemaB.PDF), a retail system-based dataset

• A denormalized model using an Amazon.com customer product reviews dataset

To load the datasets, we will use the COPY command, which allows data to be copied from

Amazon S3 to an Amazon Redshift data warehouse (serverless or provisioned cluster), which is

the recommended way to load large data.

Getting ready
To complete this recipe, you will need:

• An Amazon Redshift data warehouse deployed in AWS region eu-west-1

• Amazon Redshift data warehouse admin user credentials

• Access to any SQL interface, such as a SQL client or Amazon Redshift query editor v2

• An IAM role attached to Amazon Redshift data warehouse that can access Amazon S3

How to do it…
We will create and load the following dimensional model, which is based on the star schema

benchmark (SSB) for an illustrative retail system. A star schema is a dimensional data mod-

el where a central fact table contains the main business metrics (facts) and is surrounded by

dimension tables (like points of a star), hence the name.

Figure 3.1 –SSB data model

https://www.cs.umb.edu/~poneil/StarSchemaB.PDF
https://www.cs.umb.edu/~poneil/StarSchemaB.PDF

Loading and Unloading Data60

Now, let’s create the tables that mimic the previous data model and populate the data into the

tables:

1. We will get started by setting up the data in your Amazon S3 bucket. Download Ssb_

Table_Ddl.sql from the GitHub location https://github.com/PacktPublishing/

Amazon-Redshift-Cookbook-2E/blob/main/Chapter03/Ssb_Table_Ddl.sql, copy and

paste it into any SQL client tool, and execute it to create the dimensional model for the

retail system dataset:

DROP TABLE IF EXISTS lineitem;

DROP TABLE IF EXISTS supplier;

DROP TABLE IF EXISTS part;

DROP TABLE IF EXISTS orders;

DROP TABLE IF EXISTS customer;

DROP TABLE IF EXISTS dwdate;

CREATE TABLE customer

(

 C_CUSTKEY BIGINT NOT NULL,

 C_NAME VARCHAR(25),

 C_ADDRESS VARCHAR(40),

 C_NATIONKEY BIGINT,

 C_PHONE VARCHAR(15),

 C_ACCTBAL DECIMAL(18,4),

 C_MKTSEGMENT VARCHAR(10),

 C_COMMENT VARCHAR(117)

…

CREATE TABLE dwdate

(

 d_datekey INTEGER NOT NULL,

 d_date VARCHAR(19) NOT NULL,

 d_dayofweek VARCHAR(10) NOT NULL,

 d_month VARCHAR(10) NOT NULL,

 d_year INTEGER NOT NULL,

…

 d_lastdayinweekfl VARCHAR(1) NOT NULL,

 d_lastdayinmonthfl VARCHAR(1) NOT NULL,

 d_holidayfl VARCHAR(1) NOT NULL,

 d_weekdayfl VARCHAR(1) NOT NULL

);

https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter03/Ssb_Table_Ddl.sql
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter03/Ssb_Table_Ddl.sql

Chapter 3 61

2. We will now load data from the public S3 bucket to the previous tables. Use any SQL client

tool and execute the following command by replacing the [Your-AWS_Account_Id] and

[Your-Redshift_Role] values from the technical requirements in the following script.

In each COPY command, notice that the file format and compression are specified, such
as csv and gzip:

COPY customer

from 's3://packt-redshift-cookbook/customer/'

iam_role 'arn:aws:iam::[Your-AWS_Account_Id]:role/[Your-Redshift_

Role]'

CSV gzip;

COPY orders

from 's3://packt-redshift-cookbook/orders/'

iam_role 'arn:aws:iam::[Your-AWS_Account_Id]:role/[Your-Redshift_

Role]'

CSV gzip;

COPY part

from 's3://packt-redshift-cookbook/part/'

iam_role 'arn:aws:iam::[Your-AWS_Account_Id]:role/[Your-Redshift_

Role]'

CSV gzip;

COPY supplier

from 's3://packt-redshift-cookbook/supplier/'

iam_role 'arn:aws:iam::[Your-AWS_Account_Id]:role/[Your-Redshift_

Role]'

CSV gzip;

COPY lineitem

from 's3://packt-redshift-cookbook/lineitem/'

iam_role 'arn:aws:iam::[Your-AWS_Account_Id]:role/[Your-Redshift_

Role]'

CSV gzip;

COPY dwdate

from 's3://packt-redshift-cookbook/dwdate/'

Loading and Unloading Data62

iam_role 'arn:aws:iam::[Your-AWS_Account_Id]:role/[Your-Redshift_

Role]'

CSV gzip dateformat 'auto';

3. Verify that all the tables have been loaded with the correct number of rows using the

following command and the output:

select count(1) from lineitem; -- expected rows: 599037902

select count(1) from supplier; -- expected rows: 1100000

select count(1) from part; -- expected rows:20000000

select count(1) from orders; -- expected rows: 76000000

select count(1) from customer; -- expected rows: 15000000

select count(1) from dwdate; -- expected rows: 2556

4. Now, the dimensional model is ready for querying. We can run an analytical query like the

following to join the different tables of the dimensional model to retrieve order metrics

for each market segment in 1992:

SELECT c_mktsegment,

 COUNT(o_orderkey) AS orders_count,

 SUM(l_quantity) AS quantity,

 SUM(l_extendedprice) AS extendedprice,

 COUNT(DISTINCT P_PARTKEY) AS parts_count,

 COUNT(DISTINCT L_SUPPKEY) AS supplier_count,

 COUNT(DISTINCT o_custkey) AS customer_count

FROM lineitem

 JOIN orders ON l_orderkey = o_orderkey

 JOIN customer c ON o_custkey = c_custkey

 JOIN dwdate

 ON d_date = l_commitdate

 AND d_year = 1992

 JOIN part ON P_PARTKEY = l_PARTKEY

Note

The script will take ~10 minutes to complete. Each table load will

output Load into table *** completed, *** record(s) loaded

successfully to acknowledge a successful execution.

Chapter 3 63

 JOIN supplier ON L_SUPPKEY = S_SUPPKEY

GROUP BY c_mktsegment;

5. In addition to the dimensional model, let’s also create a denormalized table using the

Amazon product review data. Create the product review data table using:

CREATE TABLE product_reviews(

 marketplace varchar(2),

 customer_id varchar(32),

 review_id varchar(24),

 product_id varchar(24),

 product_parent varchar(32),

 product_title varchar(512),

 star_rating int,

 helpful_votes int,

 total_votes int,

 vine char(1),

 verified_purchase char(1),

 review_headline varchar(256),

 review_body varchar(max),

 review_date date,

 year int,

 product_category varchar(32),

 insert_ts datetime default current_timestamp)

DISTSTYLE KEY

DISTKEY (customer_id)

SORTKEY (

 marketplace,

 product_category,

 review_date);

6. Now, let’s load the review data into the product_reviews table by executing the following

command in the SQL client:

COPY product_reviews

FROM 's3://packt-redshift-cookbook/reviews_parquet/' iam_role

'arn:aws:iam::[Your-AWS_Account_Id]:role/[Your-Redshift_Role]'

PARQUET;

Loading and Unloading Data64

7. Now, the product_reviews table is ready for querying, and you can execute the following

query to get the top 10 most-voted products in the Apparel product category:

SELECT product_title,

 SUM(total_votes)

FROM product_reviews

WHERE product_category = 'Apparel'

GROUP BY product_title

ORDER BY SUM(total_votes) DESC LIMIT 10;

Now, we have used Amazon S3 to move data into Amazon Redshift using the COPY command and

set up a dimensional and denormalized dataset.

How it works…
The Amazon Redshift COPY command is used to load large datasets into Amazon Redshift

from Amazon S3. This is the recommended approach as the COPY command takes advantage

of the massively parallel processing (MPP) of the Amazon Redshift to ingest the data into the

Amazon Redshift table efficiently. The COPY command also provides several ways to ingest incom-

ing files. This includes support for multiple file formats (such as CSV, Parquet, and JSON) with
error handling and the flexibility to ingest all kinds of structured data.

See also…
For more information on using the COPY command from Amazon S3, visit https://docs.aws.

amazon.com/redshift/latest/dg/copy-parameters-data-source-s3.html.

Take a look at the best practices for the COPY command at https://docs.aws.amazon.com/

redshift/latest/dg/c_loading-data-best-practices.html.

Note

The packt-redshift-cookbook S3 bucket should be in the eu-west-1 region.

Your Amazon Redshift data warehouse must be in the same region in order

to load Parquet or ORC files using the COPY command.

https://docs.aws.amazon.com/redshift/latest/dg/copy-parameters-data-source-s3.html
https://docs.aws.amazon.com/redshift/latest/dg/copy-parameters-data-source-s3.html
https://docs.aws.amazon.com/redshift/latest/dg/c_loading-data-best-practices.html
https://docs.aws.amazon.com/redshift/latest/dg/c_loading-data-best-practices.html

Chapter 3 65

Loading data from Amazon DynamoDB
Amazon DynamoDB is a serverless, NoSQL, fully managed database with single-digit millisec-

ond performance at any scale. DynamoDB is designed to be used as an operational database in

OLTP use cases where you know access patterns and can design your data model for those access

patterns. When you want to perform analytics, you can complement Amazon DynamoDB with

Amazon Redshift’s OLAP capabilities.

In this recipe, we will see how data from an Amazon DynamoDB table can be copied to an Amazon

Redshift data warehouse (serverless or provisioned cluster) table using the COPY command. We

will use the full table copy approach in this recipe.

You can also load data in near real-time from Amazon DynamoDB into Amazon Redshift by

leveraging zero ETL integration. There is a recipe for this zero ETL integration in Chapter 4.

Getting ready
To complete this recipe, you will need:

• Access to the AWS Console.

• An Amazon Redshift data warehouse deployed in AWS region eu-west-1.

• Amazon Redshift data warehouse admin user credentials.

• Access to any SQL interface, such as a SQL client or Amazon Redshift query editor.

• An Amazon DynamoDB table deployed in AWS region eu-west-1. Refer to https://

docs.aws.amazon.com/amazondynamodb/latest/developerguide/GettingStarted.

Python.html to set up the necessary AWS SDK for Python (Boto3) and use https://

github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter03/

CreateAndLoad_dynamodb.py to set up the sample part table.

• An IAM role attached to the Amazon Redshift data warehouse that can access Amazon

DynamoDB.

• Access to the AWS CLI to get the record count from the Amazon DynamoDB table

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GettingStarted.Python.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GettingStarted.Python.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GettingStarted.Python.html
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter03/CreateAndLoad_dynamodb.py
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter03/CreateAndLoad_dynamodb.py
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter03/CreateAndLoad_dynamodb.py

Loading and Unloading Data66

How to do it…
In this recipe, we will load data directly from Amazon DynamoDB to Amazon Redshift:

1. Let’s start with making a cli call to a DynamoDB table part to verify the total number

of item counts. Execute the following on the command line and you will see a count of

20000 in the part table:

aws dynamodb scan --table-name part --select "COUNT"

output:

 {

 "Count": 20000,

 "ScannedCount": 20000,

 "ConsumedCapacity": null }

2. Log in to Amazon Redshift data warehouse using a SQL client or query editor v2 and

create the part table:

DROP TABLE IF EXISTS part;

CREATE TABLE part

(

 P_PARTKEY BIGINT NOT NULL,

 P_NAME VARCHAR(55),

 P_MFGR VARCHAR(25),

 P_BRAND VARCHAR(10),

 P_TYPE VARCHAR(25),

 P_SIZE INTEGER,

 P_CONTAINER VARCHAR(10),

 P_RETAILPRICE DECIMAL(18,4),

 P_COMMENT VARCHAR(23)

)

diststyle ALL;

3. Frame the COPY command to load into the part table in Amazon Redshift from the part

table in Amazon DynamoDB:

COPY part from 'dynamodb://part'

iam_role 'arn:aws:iam::[Your-AWS_Account_Id]:role/[Your-Redshift_

Role]'

readratio 50;

Chapter 3 67

The readratio parameter specifies the percentage of the DynamoDB table’s provisioned

throughput to use for the data load. It is a mandatory parameter for COPY from DynamoDB.

4. Execute the above COPY command using the Amazon Redshift query editor.

5. Verify the record count of the data loaded into the part table. 20000 records have been

loaded to the part table:

Select count(*) from part;

--expected sample output

count(*)

20000

6. Let’s review the column values for the part table on Amazon Redshift:

Select p_partkey,p_name,p_mfgr from part limit 5;

--expected sample output

p_partkey p_name p_mfgr

800213 chartreuse steel indian burlywood Manufacturer#2

1101041 red lemon khaki frosted blush Manufacturer#1

2500838 tan cream cyan lemon olive Manufacturer#2

12669574 bisque salmon honeydew violet steel Manufacturer#2

12579584 pale linen thistle firebrick orange Manufacturer#3

How it works…
In the COPY command that is used to load data from Amazon Dynamo DB, the column names in the

Amazon Redshift table should match the attribute names in the DynamoDB part table. If a column

name is not present in DynamoDB, it is loaded with empty or NULL based on the COPY command’s

emptyasnull option. If the attributes in DynamodDB are not present in the Amazon Redshift table,

those attributes are discarded. Also notice that you can specify the Amazon DynamoDB readratio

(in the preceding readratio of 50); this regulates the percentage of provisioned throughput that

is consumed by the COPY command for DynamoDB table part.

Loading and Unloading Data68

Updating and inserting data
An Extract Load Transform (ELT) process is a common technique to refresh the data warehouse

from the source system. The ELT process can be executed as a batch near real-time process that

allows staging the data from the source system and performing bulk refresh into the Amazon

Redshift data warehouse (serverless or provisioned cluster). Amazon Redshift being an RDBMS

system allows data refresh in the form of MERGE operations, which combine the functionality of

INSERT, UPDATE, and DELETE operations. In this recipe, we will delve into some of the common

ELT strategies to refresh a dimensional model using the MERGE command.

Getting ready
To complete this recipe, you will need:

• Access to the AWS Console

• An Amazon Redshift data warehouse deployed in AWS region eu-west-1

• Amazon Redshift data warehouse admin user credentials

• Access to any SQL interface, such as a SQL client or the Amazon Redshift query editor

• A sample dimensional model setup

How to do it…
This recipe will illustrate refreshing the part dimension, followed by the lineitem fact table. The

dimensional tables will be refreshed first and followed by the fact table to maintain the data’s integ-

rity. The complete script for this recipe is also available at https://github.com/PacktPublishing/

Amazon-Redshift-Cookbook-2E/blob/main/Chapter03/part.sql and https://github.com/

PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter03/Insert_Update_

Lineitem.sql. Let’s start with the data refresh for the part dimension:

1. Open any SQL client tool and start the transaction for the part dimension table to refresh:

BEGIN TRANSACTION;

Tip

Using the transaction to update the data allows rollback if there is an error,

and also, end users do not see the intermediate state of the data change.

https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter03/part.sql
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter03/part.sql
 https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter03/Insert_Update_Lineitem.sql
 https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter03/Insert_Update_Lineitem.sql
 https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter03/Insert_Update_Lineitem.sql

Chapter 3 69

2. Create the staging table and load the incoming incremental data from the source:

/* Create a staging table to hold the input data. Staging table is

created with BACKUP NO option for faster inserts and also since data

is temporary */

DROP TABLE IF EXISTS stg_part;

CREATE TABLE stg_part

(

 NAME VARCHAR(55),

 MFGR VARCHAR(25),

 BRAND VARCHAR(10),

 TYPE VARCHAR(25),

 SIZE INTEGER,

 CONTAINER VARCHAR(10),

 RETAILPRICE DECIMAL(18,4),

 COMMENT VARCHAR(23)

)

BACKUP NO

;

COPY stg_part

FROM 's3://packt-redshift-cookbook/etl/part/dt=2020-08-15/' iam_role

'arn:aws:iam::[Your-AWS_Account_Id]:role/[Your-Redshift_Role]'csv

gzip compupdate preset;

3. Data will be merged into the part dimension table using the MERGE command which

will update existing matching records and insert new records. The update and insert

operations are performed based on the natural key of the table:

MERGE INTO part AS tgt

USING stg_part AS src

ON tgt.p_name = src.name

WHEN MATCHED THEN

 UPDATE SET

Tip

Notice that incremental data for 2020-08-15 is loaded into the stg_part

table.

Loading and Unloading Data70

 p_mfgr = src.mfgr,

 p_brand = src.brand,

 p_type = src.type,

 p_size = src.size,

 p_container = src.container,

 p_retailprice = src.retailprice,

 p_comment = src.comment

WHEN NOT MATCHED THEN

 INSERT (p_partkey, p_name, p_mfgr, p_brand, p_type, p_size, p_

container, p_retailprice, p_comment)

 VALUES (

 (SELECT MAX(p_partkey) + ROW_NUMBER() OVER (ORDER BY src.name)

FROM part),

 src.name,

 src.mfgr,

 src.brand,

 src.type,

 src.size,

 src.container,

 src.retailprice,

 src.comment

);

4. The data refresh is now complete on the target part dimension. Commit the transaction

using the following command:

-- commit and End transaction

END TRANSACTION;

Note

Similarly, you can repeat the preceding steps for other dimensional tables

as well before starting the fact table.

Chapter 3 71

5. Now, let’s refresh the lineitem fact table using the following script. Start the transaction

for the lineitem fact table:

-- Start a new transaction

BEGIN TRANSACTION;

6. Create the staging table to hold the incoming incremental data, as shown in the following

block:

-- Drop stg_lineitem if exists

DROP TABLE IF EXISTS stg_lineitem;

-- Create a stg_lineitem staging table and COPY data from input S3

location with the refreshed incremental data

CREATE TABLE stg_lineitem(

 orderkey BIGINT,

 LINENUMBER INTEGER NOT NULL,

 QUANTITY DECIMAL(18,4),

 EXTENDEDPRICE DECIMAL(18,4),

 DISCOUNT DECIMAL(18,4),

 TAX DECIMAL(18,4),

 RETURNFLAG VARCHAR(1),

 LINESTATUS VARCHAR(1),

 SHIPDATE DATE,

 COMMITDATE DATE,

 RECEIPTDATE DATE,

 SHIPINSTRUCT VARCHAR(25),

 SHIPMODE VARCHAR(10),

 COMMENT VARCHAR(44),

 p_name VARCHAR(55),

 s_name VARCHAR(25)

)

BACKUP NO;

COPY stg_lineitem FROM 's3://packt-redshift-cookbook/etl/lineitem/

shipdate_dt=2020-08-15/' iam_role 'arn:aws:iam::[Your-AWS_Account_

Id]:role/[Your-Redshift_Role]' csv gzip;

Loading and Unloading Data72

7. Delete any existing data (if any) for 2020-08-15 and refresh it with the current data for

this date:

-- Delete any rows from target store_sales for the input date for

idempotency

DELETE FROM lineitem WHERE l_shipdate = '2020-10-15';

8. Merge the new incoming data for 2020-18-15 into the lineitem fact table using the

following MERGE statement:

WITH supplier_dim AS

 (SELECT DISTINCT s_name, s_suppkey FROM supplier),

part_dim AS

 (SELECT DISTINCT p_name, p_partkey FROM part)

MERGE INTO lineitem AS tgt

USING stg_lineitem AS src

 ON tgt.l_shipdate = '2020-10-15'

 AND tgt.l_partkey = (SELECT p_partkey FROM part_dim WHERE p_name

= src.p_name)

 AND tgt.l_suppkey = (SELECT s_suppkey FROM supplier_dim WHERE

s_name = src.s_name)

WHEN NOT MATCHED THEN

 INSERT (

 l_orderkey, l_partkey, l_suppkey, l_linenumber, l_quantity,

 l_extendedprice, l_discount, l_tax, l_returnflag, l_linestatus,

 l_shipdate, l_commitdate, l_receiptdate, l_shipinstruct, l_

shipmode, l_comment

)

 VALUES (

 src.orderkey, (SELECT p_partkey FROM part_dim WHERE p_name =

src.p_name),

 (SELECT s_suppkey FROM supplier_dim WHERE s_name = src.s_name),

 src.linenumber, src.quantity, src.extendedprice, src.discount,

src.tax,

Tip

Notice that the incremental data for 2020-08-15 is loaded into the stg_

lineitem table.

Chapter 3 73

 src.returnflag, src.linestatus, src.shipdate, src.commitdate,

src.receiptdate,

 src.shipinstruct, src.shipmode, src.comment);

9. All the data refresh is now complete on the target lineitem fact table. Commit the trans-

action using the following code:

-- commit and End transaction

COMMIT;

10. Now you have a refreshed dimensional model with the latest data that can be verified by
executing the following query:

SELECT c_mktsegment,

 COUNT(o_orderkey) AS orders_count,

 SUM(l_quantity) AS quantity,

 SUM(l_extendedprice) AS extendedprice,

 COUNT(DISTINCT P_PARTKEY) AS parts_count,

 COUNT(DISTINCT L_SUPPKEY) AS supplier_count,

 COUNT(DISTINCT o_custkey) AS customer_count

FROM lineitem

 JOIN orders ON l_orderkey = o_orderkey

 JOIN customer c ON o_custkey = c_custkey

 JOIN part ON P_PARTKEY = l_PARTKEY

 JOIN supplier ON L_SUPPKEY = S_SUPPKEY

Important Note

Note that dimensional keys are derived from the dimensional table using

the natural keys.

Important Note

Notice that all data in the dimension and fact tables is handled in bulk to

update/insert all the incoming data in one go. This is a best practice since

the effort to perform Data Manipulation Language (DML) on a few rows

or several rows is the almost the same.

Loading and Unloading Data74

WHERE l_shipdate = '2020-10-15'

GROUP BY c_mktsegment;

The previous ELT strategy can now be integrated with any workflow tool that will allow automatic
refresh for the data warehouse.

Ingesting data from transactional sources using
AWS DMS
When you have on-premises or AWS RDS transactional data sources that don’t natively support

zero-ETL integrations and you want to replicate or migrate that data to your Amazon Redshift data

warehouse for consolidation or reporting purposes, you can utilize the AWS Database Migration

Service (DMS). AWS DMS is a fully managed service that helps in performing full load as well

as ongoing change data capture from supported transactional data sources to Amazon Redshift.

In this recipe, we will do a full replication of the parts table from Amazon RDS MySQL, servicing as

a transactional source, to an Amazon Redshift data warehouse (serverless or provisioned cluster).

Getting ready
To complete this recipe, you will need:

• Amazon Redshift data warehouse deployed in the eu-west-1 AWS region

• Amazon Redshift data warehouse admin user credentials

• An IAM user with access to Amazon Redshift, Amazon RDS, and AWS DMS

• Amazon RDS MySQL Cluster deployed in AWS regions eu-west-1 in the same VPC as

the Amazon Redshift data warehouse (reference: https://aws.amazon.com/getting-

started/hands-on/create-mysql-db/)

• Capture the login credentials for the Amazon RDS MySQL cluster

• An AWS Database Migration Replication instance deployed in the eu-west-1 AWS region in

the same VPC as Amazon Redshift data warehouse (reference: https://docs.aws.amazon.

com/dms/latest/sbs/CHAP_RDSOracle2Aurora.Steps.CreateReplicationInstance.

html)

• Command line to connect to Amazon RDS MySQL (reference: https://docs.aws.amazon.

com/AmazonRDS/latest/UserGuide/USER_ConnectToInstance.html)

• Open connectivity between your local client, such as Amazon EC2 Linux, to the Amazon

RDS MySQL database

https://aws.amazon.com/getting-started/hands-on/create-mysql-db/
https://aws.amazon.com/getting-started/hands-on/create-mysql-db/
https://docs.aws.amazon.com/dms/latest/sbs/CHAP_RDSOracle2Aurora.Steps.CreateReplicationInstance.html
https://docs.aws.amazon.com/dms/latest/sbs/CHAP_RDSOracle2Aurora.Steps.CreateReplicationInstance.html
https://docs.aws.amazon.com/dms/latest/sbs/CHAP_RDSOracle2Aurora.Steps.CreateReplicationInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ConnectToInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ConnectToInstance.html

Chapter 3 75

• Open connectivity between Amazon RDS MySQL and AWS DMS instance

• Note the VPC ID where Amazon Redshift and Amazon RDS are deployed

How to do it…
This recipe illustrates full replication of the parts table from Amazon RDS MySQL to the Amazon

Redshift data warehouse using AWS DMS as the replication engine:

1. Let’s connect to the Amazon RDS MySQL database using the command line installed

on the AWS EC2 instance. Enter the password, and it will connect you to the database:

mysql -h [yourMySQLRDSEndPoint] -u admin -p;

2. We will create an ods database on MySQL and create a parts table in the ods database:

create database ods;

CREATE TABLE ods.part

(

 P_PARTKEY BIGINT NOT NULL,

 P_NAME VARCHAR(55),

 P_MFGR VARCHAR(25),

 P_BRAND VARCHAR(10),

 P_TYPE VARCHAR(25),

 P_SIZE INTEGER,

 P_CONTAINER VARCHAR(10),

 P_RETAILPRICE DECIMAL(18,4),

 P_COMMENT VARCHAR(23)

);

3. On your client server, download the part.tbl file from https://github.com/
PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter03/part.sql.

4. Now, we will load this file into the ods.part table in the MySQL database. This will load

20,000 records into the parts table:

LOAD DATA LOCAL INFILE 'part.tbl'

 INTO TABLE ods.part

 FIELDS TERMINATED BY '|'

 LINES TERMINATED BY '\n';

https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter03/part.sql
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter03/part.sql

Loading and Unloading Data76

Let's verify the record count loaded into ods.part table.

MySQL [(none)]> select count(*) from ods.part;

+----------+

| count(*) |

+----------+

| 20000 |

+----------+

1 row in set (0.00 sec)

5. Turn on binary logging in the RDS MySQL database by executing the following command:

call mysql.rds_set_configuration('binlog retention hours', 24);

In your MySQL database instance in parameter group, set the binlog_format parameter

to ROW.

6. Now, we will go to the AWS Database Migration Services landing page to create a source

and target for the replication instance (https://console.aws.amazon.com/dms/v2/

home?).

7. First, we will create a Source endpoint for RDS MySql:

1. Navigate to Endpoints and click on Create Endpoint.

2. Select Source Endpoint and check Select RDS DB instance.

3. From the dropdown, select your RDS Instance.

Figure 3.2 – Create an AWS DMS source endpoint for the MySQL database

https://console.aws.amazon.com/dms/v2/home?
https://console.aws.amazon.com/dms/v2/home?

Chapter 3 77

4. Enter the password for your RDS MySQL database.

Figure 3.3 – AWS DMS source endpoint for the MySQL database

5. Test your endpoint connection from the AWS DMS replication you created earlier

on. Select the VPC and replication instance and click Run test. You will receive a

successful connection message on completion.

Figure 3.4 – AWS DMS source endpoint for MySQL database test connection

Loading and Unloading Data78

8. Secondly, we will create a target endpoint for the Amazon Redshift data warehouse. Click

on Create endpoint and select the target endpoint. Populate the details of your Amazon

Redshift data warehouse endpoint, userid, password, and database name. Test the

connection using the pre-created database replication instance:

Figure 3.5 – AWS DMS target endpoint for Amazon Redshift

Chapter 3 79

9. Now, we will create the database migration task:

• Navigate to database migration tasks, and click on Create task.

• Select the Replication instance.

• For source database endpoint, select mysqldb, and for the target, select the

Amazon Redshift endpoint, cookbooktarget.

• For migration type, select migrate existing and replicate ongoing changes. This

will do a full load followed by ongoing change data capture.

Figure 3.6 – AWS DMS migration task

10. For target table preparation mode, select Do nothing. AWS DMS assumes that the target

tables have been pre-created in Amazon Redshift.

Loading and Unloading Data80

11. For table mappings, add the following rule. Enter the ods schema and set the table name

to the % wildcard.

Figure 3.7 – AWS DMS migration task source table mapping rules

12. For transformation rules for the target, select the ods schema, set the Table name as a

wildcard, and set Action to add the stg_ prefix to the tablename on Amazon Redshift.

Chapter 3 81

In the DMS task, you can apply some transformation rules, such as converting to

lowercase or removing columns.

Figure 3.8 – AWS DMS migration task target transformation rule

13. In the Migration task startup configuration, select the Manually later option and click

on Create task.

14. Once the task is ready, click on the task. Then, under action, select restart and resume.

With this, the replication instance has been connected to the source and replicated data

to Amazon Redshift.

Loading and Unloading Data82

15. To view the status of the replication, click on Table statistics. The load state on completion

will display Table completed. The total number of rows is 20,000 in the target Amazon

Redshift ods�part table.

Figure 3.9 – AWS DMS migration task status and full mode replicated record count

16. Let’s insert the following records in the source MySql database part table to see the change

data capture scenario:

insert into ods.part values

(20001,'royal red metallic

dim','Manufacturer#2','Brand#25','STANDARD BURNISHED NICKEL',48,'SM

JAR',920.00,'sts-1');

insert into ods.part values

(20002,'royal red metallic

dim','Manufacturer#2','Brand#26','STANDARD BURNISHED NICKEL',48,'SM

JAR',921.00,'sts-2');

insert into ods.part values

(20003,'royal red metallic

dim','Manufacturer#2','Brand#27','STANDARD BURNISHED NICKEL',48,'SM

JAR',922.00,'sts-3');

insert into ods.part values

(20004,'royal red metallic

dim','Manufacturer#2','Brand#28','STANDARD BURNISHED NICKEL',48,'SM

JAR',923.00,'sts-4');

insert into ods.part values

(20005,'royal red metallic

dim','Manufacturer#2','Brand#29','STANDARD BURNISHED NICKEL',48,'SM

JAR',924.00,'sts-5');

Chapter 3 83

17. Let’s check the change data capture on the database migration task of the newly

inserted five records. The Inserts column shows 5 and the Total rows on the target now

has 20,005 records:

Figure 3.10 – AWS DMS migration task status and change data capture replicated

record count

18. Let’s confirm the record count on the ods.stg_part Amazon Redshift table. Execute the

following query in the SQL client and the output will be 20,005 records:

select count(*) from ods.stg_part;

19. You can choose to stop the database migration task by navigating to Database migration

tasks | Actions | Stop.

How it works…
AWS DMS provides the capability to do homogeneous (on the same database platform, such as

from an on-premises MySQL to Amazon RDS MySQL) and heterogeneous (different database

platform) replication. In this recipe, we saw the scenario of heterogeneous replication where the

source is MySQL and the target is Amazon Redshift. Using an AWS DMS task, it first fully migrated
the data to Amazon Redshift and the task captured changes from the source transactional logs,

which were replicated to Amazon Redshift in near real time.

See also…
You can get more details on turning on binary logging on this link. This is to enable change data

capture for AWS DMS: https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Source.

MySQL.html#CHAP_Source.MySQL.AmazonManag.

https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Source.MySQL.html#CHAP_Source.MySQL.AmazonManag
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Source.MySQL.html#CHAP_Source.MySQL.AmazonManag

Loading and Unloading Data84

Cataloging and ingesting data using AWS Glue
Data that is staged in Amazon S3 can be cataloged using the AWS Glue service. Cataloging the

data allows attaching the metadata and populating the AWS Glue Data Catalog. This process

enriches the raw data that can queried as tables using many of the AWS analytical services, such

as Amazon Redshift or Amazon EMR, for the analytical processing. It is easy to perform this data

discovery using the AWS Glue crawlers that can create and update the metadata automatically.

In this recipe, we will enrich the data to catalog and enable ingestion into an Amazon Redshift

data warehouse (serverless or provisioned cluster).

Getting ready
To complete this recipe, you will need:

• An Amazon Redshift data warehouse deployed in the eu-west-1 AWS region.

• Amazon Redshift data warehouse admin user credentials.

• An IAM user with access to Amazon Redshift, Amazon S3, and AWS Glue.

• An IAM role attached to Amazon Redshift data warehouse that can access Amazon S3, we

will reference it in the recipes as [Your-Redshift_Role].

• Access to any SQL interface, such as a SQL client or Amazon Redshift query editor.

• An Amazon S3 bucket for staging and unloading the data in specific recipes, we will
reference it in recipes as [Your-Amazon_S3_Bucket]. The Amazon S3 bucket must be in

the same region as your Amazon Redshift data warehouse.

• An AWS account number, we will reference it in recipes as [Your-AWS_Account_Id].

How to do it…
This recipe will catalog and ingest the Amazon.com customer product reviews dataset into

Amazon Redshift:

1. Navigate to the AWS Console and pick AWS Glue. Verify that you are in the same AWS

Region as the Amazon Redshift data warehouse. In the left navigation menu, inside AWS

Glue, choose Data Catalog and then choose Crawlers.

2. Click the Create Crawler button and type in any crawler name, such as product reviews

dataset crawl and click Next.

Chapter 3 85

3. On the Choose data sources and classifiers page, follow the instructions as per the
screenshots in Figure 3.11. In the Data source configuration section, for the question Is

your data already mapped to Glue tables? select Not yet, and then choose Add a data

source. In the dialog box that appears, enter the following information:

a. For Data source, choose S3.

b. For the location of S3 data, you can indicate whether the data is in the same account

or a different account. For this recipe walkthrough, choose In a different account.

c. For S3 path, copy and paste the path s3://packt-redshift-cookbook/amazon-

reviews-pds/parquet/.

d. For the subsequent crawler runs option, you can choose how the crawler behaves.

For this walkthrough, choose Crawl all sub-folders and choose Add an S3 data

source.

e. Back on the Choose data sources and classifiers page, in the Data Sources section,

you will see the S3 data source you added. Choose Next on this page.

Figure 3.11 – Adding a crawler

4. On the Configure security settings page, for IAM Role, choose an IAM role to allow AWS

Glue access to crawl and update the AWS Glue Catalog and click on the Next button.

5. On the Set output and scheduling page, in the Output Configuration section, for

Target database, click on Add database and give the database a representative name,

such as reviews, and click Create Database.

Loading and Unloading Data86

Go back to the Set output and scheduling page, choose the refresh button next to the

Target database dropdown, choose reviews, and for Table name prefix, enter product_

reviews_src. Finally, click Next.

Figure 3.12 – Configure the crawler output

6. On Review and create page, click on Create crawler to create the crawler. On the crawler

details page, choose Run crawler and wait until the status changes to Success:

Figure 3.13 – Monitor the crawler status

Chapter 3 87

7. Now, AWS Glue has crawled the product review dataset and discovered the table

automatically. You can verify the table by navigating to the Tables option to view the

product_reviews_srcparquet table in the list:

Figure 3.14 – View the table created by the crawler

8. Open any SQL client tool, connect to Amazon Redshift, and create a schema to point to

the reviews AWS Glue catalog database using the following command by replacing the

[Your-AWS_Account_Id] and [Your-Redshift_Role] values:

CREATE external SCHEMA review_ext_sch FROM data catalog DATABASE

'reviews' iam_role 'arn:aws:iam::[Your-AWS_Account_Id]:role/[Your-

Redshift-Role]' CREATE external DATABASE if not exists;

9. Create the product_reviews_stage table that will hold the incoming crawled data:

CREATE TABLE product_reviews_stage

(

 marketplace VARCHAR(2),

 customer_id VARCHAR(32),

 review_id VARCHAR(24),

 product_id VARCHAR(24),

 product_parent VARCHAR(32),

 product_title VARCHAR(512),

 star_rating INT,

 helpful_votes INT,

 total_votes INT,

 vine CHAR(1),

 verified_purchase CHAR(1),

 review_headline VARCHAR(256),

 review_body VARCHAR(MAX),

 review_date DATE,

Loading and Unloading Data88

 YEAR INT

)

DISTSTYLE KEY DISTKEY (customer_id) SORTKEY (review_date);

10. Now, let’s insert Automotive data from the crawled AWS Glue table into the Amazon

Redshift table, product_reviews_stage:

INSERT INTO product_reviews_stage

(

 marketplace,

 customer_id,

 review_id,

 product_id,

 product_parent,

 product_title,

 star_rating,

 helpful_votes,

 total_votes,

 vine,

 verified_purchase,

 review_headline,

 review_body,

 review_date,

 year

)

SELECT marketplace,

 customer_id,

 review_id,

 product_id,

 product_parent,

 product_title,

 star_rating,

 helpful_votes,

 total_votes,

 vine,

 verified_purchase,

 review_headline,

 review_body,

Chapter 3 89

 review_date,

 year

FROM review_ext_sch.reviewparquet

WHERE product_category = 'Automotive';

11. Now, the public.product_reviews_stage table is ready to hold the incoming Automotive

dataset, which can be verified by using the following command:

SELECT *

FROM product_reviews_stage;

How it works…
AWS Glue provides a crawler that can automatically figure out the structure of data in Amazon
S3. AWS Glue maintains the metadata catalog that can be accessed across other AWS analytical

services, such as Amazon Redshift. Amazon Redshift can read/write data into Amazon S3 directly

using the Amazon Redshift spectrum feature.

Streaming data to Amazon Redshift via Amazon Data
Firehose
Streaming data is a continuous dataset that can originate from sources such as IoT devices, log

files, gaming systems, and so on. Ingesting the streaming data into Amazon Redshift allows you
to run near real-time analytics that can be combined with historical/operational data to produce

actionable reporting. For example, in a manufacturing shop, analyzing data from several IoT

sensors can help predict the failure of machinery so you can take preventive action.

In this recipe, we will simulate streaming data using the Amazon.com product review data to

be ingested into Amazon Redshift using Amazon Kinesis Firehose. Amazon Kinesis Firehose

provides out-of-the-box integration to capture the streaming datasets and place them into an

Amazon Redshift table.

Loading and Unloading Data90

Getting ready
To complete this recipe, you will need:

• An Amazon Redshift data warehouse deployed in the eu-west-1 AWS region.

• Amazon Redshift data warehouse admin user credentials.

• An IAM user with access to Amazon Redshift, Amazon Kinesis, Amazon Cognito, and

Amazon S3.

• Access to any SQL interface, such as a SQL client or Amazon Redshift query editor.

• An Amazon S3 bucket created in eu-west-1. We will reference it as [Your-Amazon_S3_

Bucket].

• An IAM role attached to Amazon Redshift data warehouse that can access Amazon S3, we

will reference it in the recipes as [Your-Redshift_Role].

• Access to Kinesis data generator. This is a UI that sends test data to Amazon Kinesis. Use

this blog post to configure the open source Kinesis data generator (reference: https://
aws.amazon.com/blogs/big-data/test-your-streaming-data-solution-with-the-

new-amazon-kinesis-data-generator/).

• An AWS account number, we will reference it in recipes as [Your-AWS_Account_Id].

How to do it…
This recipe will stream the Amazon.com customer product reviews dataset and ingest it into

Amazon Redshift using the Amazon Kinesis Firehose:

1. Navigate to the AWS Console and pick the Amazon Data Firehose service. In the left menu,

choose Firehose streams and click on the Create Firehose stream button, as shown in

the following screenshot:

Figure 3.15 – Creating a Kinesis Data Firehose stream

https://aws.amazon.com/blogs/big-data/test-your-streaming-data-solution-with-the-new-amazon-kinesis-data-generator/
https://aws.amazon.com/blogs/big-data/test-your-streaming-data-solution-with-the-new-amazon-kinesis-data-generator/
https://aws.amazon.com/blogs/big-data/test-your-streaming-data-solution-with-the-new-amazon-kinesis-data-generator/

Chapter 3 91

2. In the Choose source and destination section, for source, choose Direct PUT, and for the

destination, choose Amazon Redshift.

3. Provide a Firehose stream name such as product_reviews_stream and click Next until

you get to the Choose a destination option.

4. In the Destination settings section, provide the following parameters:

• Choose Amazon Redshift destination type: Serverless workgroup or provisioned

cluster based on the type of Amazon Redshift data warehouse you created

• Serverless workgroup: If your Amazon Redshift data warehouse is serverless,

choose your workgroup

• Provisioned cluster: If your Amazon Redshift data warehouse is a provisioned

cluster, choose your cluster

• Database: Type your database name

• User name: Type the username that you chose when you set up the Amazon

Redshift data warehouse

• Password: Type the password that you chose when you set up the Amazon

Redshift data warehouse

• Database: Type database name

• Table: Type product_reviews_stg

• Columns - optional: Leave this field empty.

• Intermediate S3 destination: Choose an existing bucket or create an S3 bucket

where data will be staged before it is copied into Amazon Redshift [Your-Amazon_

S3_Bucket]

• Backup S3 bucket prefix - optional: Type /product_review_stg/

Loading and Unloading Data92

5. In COPY command options – optional, type the following script:

COPY product_reviews_stg (marketplace,customer_id,review_id,product_

id,product_parent,product_title,star_rating,helpful_votes,total_

votes,vine,verified_purchase,review_headline,review_body,review_

date,year) FROM 's3://[Your-Amazon_S3_Bucket/product_review_stg/

manifest' CREDENTIALS 'aws_iam_role=arn:aws:iam::[Your-AWS_Account_

Id]:role/[Your-Redshift_Role]' MANIFEST JSON 'auto';

Figure 3.16 – Configure the Destination Amazon Redshift data warehouse

Chapter 3 93

6. Navigate to the Review option and create the Amazon Kinesis Firehose stream.

7. Log into the Amazon Redshift data warehouse using the SQL client tool and create the

product_reviews_stg table that will hold the incoming streaming data:

CREATE TABLE product_reviews_stg

(

 marketplace VARCHAR(2),

 customer_id VARCHAR(32),

 review_id VARCHAR(24),

 product_id VARCHAR(24),

 product_parent VARCHAR(32),

 product_title VARCHAR(512),

 star_rating INT,

 helpful_votes INT,

 total_votes INT,

 vine CHAR(1),

 verified_purchase CHAR(1),

 review_headline VARCHAR(256),

 review_body VARCHAR(MAX),

 review_date DATE,

 YEAR INT

)

DISTSTYLE KEY DISTKEY (customer_id) SORTKEY (review_date);

Loading and Unloading Data94

8. Now, let’s use the Amazon Kinesis Data Generator to produce streaming data and send it

to the product_reviews_stream Kinesis Firehose Stream as follows:

Figure 3.17 – Amazon Kinesis Data Generator

Here, you will use the stream/delivery stream as product_review_stream to send the

streaming data and copy and paste the template from https://github.com/

PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/master/Chapter04/kinesis_

data_generator_template.json to generate the product reviews data:

{

 "marketplace": "{{random.arrayElement(

 ["US","UK","JP"]

)}}",

…

 "review_headline": "{{commerce.productAdjective}}",

 "review_body": "{{commerce.productAdjective}}",

 "review_date": "{{date.now("YYYY-MM-DD")}}",

 "year":{{date.now("YYYY")}}

}

https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/master/Chapter04/kinesis_data_generator_template.json
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/master/Chapter04/kinesis_data_generator_template.json
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/master/Chapter04/kinesis_data_generator_template.json

Chapter 3 95

9. After a while, the stream data should start landing into Amazon Redshift, that can be

verified by using the following code:

SELECT *

FROM product_reviews_stage;

How it works…
Amazon Kinesis Data Firehose allows data to be sourced from and streamed into multiple

destinations. It can capture, transform, and load streaming data into destinations of Amazon

S3, Amazon Redshift, Amazon Elasticsearch Service, and Splunk. Kinesis Firehose, being a fully

managed service, can automatically scale to meet the growth of the data.

Unloading data to Amazon S3
Amazon Redshift enables you to create a copy of your data stored in Amazon S3 using the UNLOAD

command. This command leverages the power of Amazon Redshift’s massive parallelism to

unload data in parallel to Amazon S3, utilizing multiple concurrent splits.

This recipe will demonstrate how to utilize the UNLOAD command to export data from an Amazon

Redshift data warehouse (serverless or provisioned cluster) to an Amazon S3 bucket.

Getting ready
To complete this recipe, you will need:

• Access to the AWS Console

• An Amazon Redshift data warehouse deployed in the AWS eu-west-1 region, and data

loaded as referenced in the Loading data from Amazon S3 recipe

• Amazon Redshift data warehouse admin user credentials

• Access to any SQL interface such as a SQL client or the Amazon Redshift query editor

• Amazon S3 bucket created in eu-west-1; we will reference it as [Your-Amazon_S3_Bucket]

• IAM role attached to Amazon Redshift data warehouse that can access Amazon S3

Loading and Unloading Data96

How to do it…
To unload the data from Amazon Redshift to an Amazon S3 bucket, we will use the following steps:

1. Connect to the Redshift data warehouse using the SQL client of your choice.

2. Use the following command to unload the data from the Amazon Redshift data warehouse.

Replace the values in [] with the corresponding values for your environment:

unload ('select * from orders')

to 's3://[Your-Amazon_S3_Bucket]/unload/orders_ '

iam_role 'arn:aws:iam::[Your-AWS_Account_Id]:role/[Your-Redshift_

Role]'

PARQUET;

The UNLOAD command will write data in Parquet format to multiple files in parallel.

3. To validate the path for the unloaded data, you can use the following SQL statement,

which queries the system table, SYS_UNLOAD_DETAIL:

select query_id, substring(file_name,0,100) as path

from SYS_UNLOAD_DETAIL

where query_id=pg_last_query_id()

order by path limit 10;

--expected sample output

query path

21585117 s3://[Your-Amazon_S3_Bucket]/unload/orders_000_

part_000.parquet

21585117 s3://[Your-Amazon_S3_Bucket]/unload/orders_001_

part_000.parquet

21585117 s3://[Your-Amazon_S3_Bucket]/unload/orders_002_

part_000.parquet

..

4. To confirm that the data is unloaded from Amazon S3, you can browse the Amazon S3

bucket and list the output parquet files. Note that when unloading data to columnar
formats like parquet, the Amazon Redshift data warehouse and Amazon S3 bucket should

be in the same region.

Chapter 3 97

See also…
You can review the https://docs.aws.amazon.com/redshift/latest/dg/r_UNLOAD.html

documentation for additional parameters that UNLOAD supports.

https://docs.aws.amazon.com/redshift/latest/dg/r_UNLOAD.html

4
Zero-ETL Ingestions

AWS zero-ETL represents a transformative suite of fully managed integrations that revolutionize

how organizations handle their data analytics needs. This comprehensive solution encompasses

native database integrations, streaming capabilities, automated S3 ingestion, and federated query-

ing—all working together to eliminate traditional ETL complexities. By automatically replicating

data from operational sources to analytical destinations, zero-ETL enables near-real-time insights

without building and maintaining complex data pipelines. This modern approach dramatically

reduces time to insight, ensures data consistency, and allows organizations to scale their data op-

erations efficiently while maintaining separation between transactional and analytical workloads.

The integration of native connectors for multiple applications, combined with automated data

synchronization and transformation capabilities, enables businesses to make faster, data-driven

decisions while significantly reducing operational overhead and technical complexity.

The following recipes are discussed in this chapter:

• Ingesting data from Aurora MySQL/Aurora Postgres/RDS MySQL using zero-ETL inte-

gration

• Ingesting data from Amazon DynamoDB using zero-ETL integration

• Ingesting data from SaaS applications like Salesforce using zero-ETL integration

• Ingesting streaming data from Amazon Kinesis Data Streams (KDS)

• Ingesting streaming data from Amazon Managed Streaming for Apache Kafka (MSK)

• Near-real-time ingestion of data from Amazon S3 using auto-copy

Zero-ETL Ingestions100

Technical requirements
Here are the technical requirements in order to complete the recipes in this chapter:

• Access to the AWS Management Console.

• An Amazon Redshift data warehouse deployed in the AWS Region eu-west-1.

• Amazon Redshift data warehouse admin user credentials.

• Attach an IAM role to the Amazon Redshift data warehouse by following Recipe 4 in

Appendix. Make note of the IAM role name; we will reference it in the recipes as

[Your-Redshift_Role].

• An AWS administrator should deploy the AWS CloudFormation template (https://

github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter04/

chapter_4_CFN.yaml) to create two IAM policies:

• An IAM policy attached to the IAM user that will give them access to Amazon

Redshift, Amazon RDS, Amazon Kinesis, Amazon Kinesis Data Firehose, Amazon

CloudWatch Logs, AWS CloudFormation, AWS Secret Manager, Amazon Cognito,

Amazon S3, AWS DMS, and AWS Glue

• An IAM policy attached to the IAM role that will allow an Amazon Redshift data

warehouse to access Amazon S3

• Access to any SQL interface, such as a SQL client or Amazon Redshift Query Editor V2.

• An AWS account number; we will reference it in the recipes as [Your-AWS_Account_Id].

• An Amazon S3 bucket created in eu-west-1; we will reference it as [Your-Amazon_S3_

Bucket].

The code files are provided in the GitHub repo: https://github.com/PacktPublishing/Amazon-
Redshift-Cookbook-2E/tree/main/Chapter04.

Ingesting data from Aurora MySQL/Aurora Postgres/
RDS MySQL using zero-ETL integration
You can replicate data from Aurora MySQL, Aurora Postgres, or RDS MySQL databases into Amazon

Redshift in near-real time using a zero-ETL integration. A zero-ETL integration is easy to use. You

need not build complex ETL pipelines or use additional AWS services or third-party solutions for

replications. The zero-ETL integration performs a one-time seeding of data and then keeps the

data in sync with ongoing changes, providing data freshness latencies of just a few seconds. You

can also include or exclude tables or databases that you don’t need from replication.

https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter04/chapter_4_CFN.yaml
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter04/chapter_4_CFN.yaml
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter04/chapter_4_CFN.yaml
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/tree/main/Chapter04
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/tree/main/Chapter04

Chapter 4 101

If you don’t want near-real-time ingestion and want to ingest at a specific interval, you can achieve
that as well using this solution.

In this recipe, you will load sample data into your source Aurora MySQL/Postgres or RDS MySQL

database, create a zero-ETL integration, and replicate it to Amazon Redshift. You will make some

changes to the source data and see the changes reflected in the target Amazon Redshift data
warehouse within seconds.

Getting ready
To complete this recipe, you will need:

• An Amazon Redshift data warehouse deployed in the AWS Region eu-west-1

• An Amazon Aurora MySQL, Aurora Postgres, or RDS MySQL cluster deployed in the AWS

Region eu-west-1 in the same VPC as the Amazon Redshift data warehouse (https://docs.

aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/zero-etl.setting-up.html)

• For a list of supported Aurora MySQL versions, see https://docs.aws.amazon.com/

AmazonRDS/latest/AuroraUserGuide/Concepts.Aurora_Fea_Regions_DB-eng.Feature.

Zero-ETL.html

• For a list of supported Aurora PostgreSQL versions, see https://docs.aws.amazon.com/

AmazonRDS/latest/AuroraUserGuide/Concepts.Aurora_Fea_Regions_DB-eng.Feature.

Zero-ETL.html#Concepts.Aurora_Fea_Regions_DB-eng.Feature.Zero-ETL-Postgres

• For a list of supported RDS MySQL versions, see https://docs.aws.amazon.com/

AmazonRDS/latest/UserGuide/Concepts.RDS_Fea_Regions_DB-eng.Feature.ZeroETL.

html

How to do it…
This recipe will illustrate the replication of a parts table from your source database cluster (Am-

azon Aurora MySQL/Postgres or RDS MySQL) to Amazon Redshift:

1. Let’s start by creating the necessary tables in an Aurora MySQL/Postgres or RDS MySQL

database. Start by connecting to your database using the query editor (https://docs.

aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/query-editor.html) for Aurora

MySQL/Postgres or using the command line for RDS MySQL (https://docs.aws.amazon.

com/AmazonRDS/latest/UserGuide/USER_ConnectToInstance.html)

2. Create an ods database using the following SQL statement:

create database ods;

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/zero-etl.setting-up.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/zero-etl.setting-up.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.Aurora_Fea_Regions_DB-eng.Feature.Zero-ETL.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.Aurora_Fea_Regions_DB-eng.Feature.Zero-ETL.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.Aurora_Fea_Regions_DB-eng.Feature.Zero-ETL.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.Aurora_Fea_Regions_DB-eng.Feature.Zero-ETL.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.Aurora_Fea_Regions_DB-eng.Feature.Zero-ETL.html#Concepts.Aurora_Fea_Regions_DB-eng.Feature.Zero-ETL-Postgres
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.Aurora_Fea_Regions_DB-eng.Feature.Zero-ETL.html#Concepts.Aurora_Fea_Regions_DB-eng.Feature.Zero-ETL-Postgres
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.Aurora_Fea_Regions_DB-eng.Feature.Zero-ETL.html#Concepts.Aurora_Fea_Regions_DB-eng.Feature.Zero-ETL-Postgres
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Concepts.Aurora_Fea_Regions_DB-eng.Feature.Zero-ETL.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RDS_Fea_Regions_DB-eng.Feature.ZeroETL.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RDS_Fea_Regions_DB-eng.Feature.ZeroETL.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RDS_Fea_Regions_DB-eng.Feature.ZeroETL.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/query-editor.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/query-editor.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ConnectToInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ConnectToInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ConnectToInstance.html)

Zero-ETL Ingestions102

3. Create a parts table in the ods database using the following SQL statement. It is mandatory

to have a primary key on your tables for zero-ETL integration to function. The syntax of

this statement is the same for both MySQL and Postgres:

CREATE TABLE ods.part

(

 P_PARTKEY BIGINT NOT NULL PRIMARY KEY,

 P_NAME VARCHAR(55),

 P_MFGR VARCHAR(25),

 P_BRAND VARCHAR(10),

 P_TYPE VARCHAR(25),

 P_SIZE INTEGER,

 P_CONTAINER VARCHAR(10),

 P_RETAILPRICE DECIMAL(18,4),

 P_COMMENT VARCHAR(23)

);

4. Load sample data into the ods.part table using the insert statement provided in

the GitHub repository (https://github.com/PacktPublishing/Amazon-Redshift-

Cookbook-2E/blob/main/Chapter04/part_table_insert1.sql). This insert statement

inserts 50 rows into the table. You can use the same statement for MySQL as well as

Postgres databases.

5. Verify the record count loaded into the ods.part table using the following SQL:

select count(*) from ods.part;

+----------+

| count(*) |

+----------+

| 50 |

+----------+

1 row in set (0.00 sec)

https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter04/part_table_insert1.sql
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter04/part_table_insert1.sql

Chapter 4 103

6. Now, we will create a zero-ETL integration in the Amazon RDS console. Navigate to the

RDS console (https://console.aws.amazon.com/rds/home) and choose Zero-ETL inte-

grations from the left navigation menu. Then click Create zero-ETL integration.

Figure 4.1 – Create zero-ETL integration

7. Provide a representative name for the integration, such as product-redshift-integ, and

choose Next:

Figure 4.2 – Give the zero-ETL integration a name

https://console.aws.amazon.com/rds/home

Zero-ETL Ingestions104

8. On the Select source page, click the Browse RDS databases button and choose your source

Aurora MySQL/Postgres or RDS MySQL database. If the database is missing any required

parameters, you will see a Fix it for me (requires reboot) checkbox. This will make the

necessary updates to parameter groups and reboot the cluster. Select Fix it for me (re-

quires reboot), as shown in the following screenshot, and click Next:

Figure 4.3 – Choose source database when creating zero-ETL integration

9. In the Data filtering options - optional section, you can choose the tables you would

like to include or exclude. If you want to replicate the part table only, enter ods.part, as

shown in the following screenshot. The filter pattern is in the format database.table for

Aurora MySQL, or database.schema.table for Aurora PostgreSQL. You can specify literal

names or define regular expressions. If you select an Aurora PostgreSQL source database
cluster, you must specify at least one data filter pattern. At a minimum, the pattern must
include a single database (database-name.*.*) for replication to Amazon Redshift. In

this example, we want to include all tables in the ods database. So, the filter pattern is
ods.*.* for Postgres.

Chapter 4 105

Figure 4.4 – Data filter options in zero-ETL integration

10. If you chose Fix it for me (requires reboot) in step 8, a confirmation page will appear for
the changes that will be made to the source database. Provide the necessary confirmation
and go to the next step.

11. On the Select target page, choose Browse Redshift data warehouses and then select

your target Amazon Redshift data warehouse. If any required parameters (https://docs.

aws.amazon.com/AmazonRDS/latest/UserGuide/zero-etl.setting-up.html#zero-etl-

setting-up.data-warehouse) are missing from the target data warehouse, you will see

a Fix it for me checkbox.

Select it, as shown in the following screenshot, and click Next:

Figure 4.5 – Choose data target for zero-ETL integration

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/zero-etl.setting-up.html#zero-etl-setting-up.data-warehouse
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/zero-etl.setting-up.html#zero-etl-setting-up.data-warehouse
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/zero-etl.setting-up.html#zero-etl-setting-up.data-warehouse

Zero-ETL Ingestions106

12. If you chose Fix it for me in the previous step, a Review the changes dialog box will ap-

pear. Verify the changes and click Continue. Click Next and then select Create zero-ETL

integration to create the integration. It will take 15-20 minutes to create the integration

depending on your data volume. The integration is active when its status changes to Active.

13. Next, navigate to the Amazon Redshift console and choose Zero-ETL integrations from

the navigation pane on the left. You will see the integration you created listed, as shown

in the following screenshot:

Figure 4.6 – Zero-ETL integration available in Amazon Redshift

14. Click the link listed under Integration ID and on the page that opens, you will get an

alert saying that you need to create a database to access the data. Click Create database

from integration:

Figure 4.7 – Create database for zero-ETL integration

Chapter 4 107

15. On the page that opens, provide a name for the database that will be created, like product_

database_zetl, and then select Create database.

16. You can now start querying data in Amazon Redshift. Connect to your Amazon Redshift

data warehouse using Amazon Redshift Query Editor V2 (https://console.aws.amazon.

com/sqlworkbench/home) to see the database you created listed there. Expand the data-

base to see the replicated tables. You can change the database from the database selection

dropdown and start querying the data using simple SELECT statements, as shown in the

following screenshot:

Figure 4.8 – Querying replicated tables in Amazon Redshift

17. Let’s now add 50 new rows to the parts table using the insert statement in the GitHub

repository (https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/

blob/main/Chapter04/part_table_insert2.sql).

18. These 50 records will be replicated to the Amazon Redshift data warehouse within seconds.

Let’s confirm the record count on the Amazon Redshift table ods.part by executing the

following count query.

The output of this query will be 100:

select count(*) from ods.part;

+----------+

| count(*) |

+----------+

| 100 |

+----------+

1 row in set (0.00 sec)

https://console.aws.amazon.com/sqlworkbench/home
https://console.aws.amazon.com/sqlworkbench/home
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter04/part_table_insert2.sql
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter04/part_table_insert2.sql

Zero-ETL Ingestions108

19. By default, the zero-ETL integration maintains a replica of the source table in the Amazon

Redshift data warehouse. You can change this default behavior and track every version

(including updates and deletes) of your records in source tables. This allows you to run

advanced analytics on all your data, such as running a historical analysis, building look-

back reports, performing trend analysis, and sending incremental updates to downstream

applications built on top of Amazon Redshift. To manage history mode for a zero-ETL

integration, open Amazon Redshift Query Editor V2 (https://console.aws.amazon.com/

sqlworkbench/home).

20. From the left navigation pane, choose Zero-ETL integrations and select the zero-ETL

integration that you want to manage. Then, select Manage history mode. The Manage

history mode window is displayed:

Figure 4.9 – History mode for zero-ETL integrations

https://console.aws.amazon.com/sqlworkbench/home
https://console.aws.amazon.com/sqlworkbench/home

Chapter 4 109

21. You can either turn it on or off for all future and existing tables. You can also manage this

at an individual table level. Three fields provided in the following table will be added to
Amazon Redshift for the tables for which history mode is activated:

_record_is_active Boolean Indicates if a record in the target is currently

active in the source. True indicates the record

is active.

_record_create_time Timestamp Starting time (UTC) when the source record

is active.

_record_delete_time Timestamp Ending time (UTC) when the source record is

updated or deleted.

You can modify the sort keys of your tables replicated through the zero-ETL integration

and achieve faster and more efficient querying of your replicated data in Amazon Redshift.
Set the sort key to AUTO and allow Amazon Redshift to observe your workload and auto-

matically set a sort key based on your evolving workload and data patterns.

How it works…
Zero-ETL integration automatically replicates data from supported sources (Aurora MySQL, Au-

rora PostgreSQL, or RDS for MySQL) to Amazon Redshift within seconds. The integration creates

a destination database in Redshift for querying replicated data using SQL and automatically

monitors and repairs the replication pipeline.

There is inbuilt monitoring and observability for zero-ETL integrations. Refer to https://docs.

aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/zero-etl.describingmonitoring.html

for more information.

You can create zero-ETL integrations from one Aurora MySQL/RDS MySQL database to multiple

Amazon Redshift target data warehouses. For an Aurora Postgres database, the association is

one-to-one; that is, you can create only one zero-ETL integration for each Aurora Postgres source

database.

If you don’t need near-real-time replication and want to replicate every few minutes, you can

alter the zero-ETL database and set a REFRESH_INTERVAL, for example:

ALTER DATABASE sample_integration_db INTEGRATION SET REFRESH_INTERVAL 600;

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/zero-etl.describingmonitoring.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/zero-etl.describingmonitoring.html

Zero-ETL Ingestions110

The interval can be set to 0–432,000 seconds (5 days) for zero-ETL integrations whose source

type is Aurora MySQL, Aurora PostgreSQL, or RDS for MySQL.

If any tables fail replication, you will see an error in the zero-ETL monitoring section. Fix the error

and refresh the tables as shown in the following line of SQL:

ALTER DATABASE sample_integration_db INTEGRATION REFRESH INERROR TABLES in

SCHEMA sample_schema;

Ingesting data from Amazon DynamoDB using zero-
ETL integration
You can seamlessly replicate data from Amazon DynamoDB tables into Amazon Redshift using a

zero-ETL integration. This native integration eliminates the need for complex ETL pipelines, ad-

ditional AWS services, or third-party tools for data replication. The zero-ETL integration process

begins with an initial bulk load of your DynamoDB data into Redshift, followed by continuous

synchronization of any changes. You will create one zero-ETL integration per DynamoDB table.

While the minimum latency is 15 minutes, you have the option to configure it to sync data at
specific intervals based on your requirements.

In this recipe, you will create a sample DynamoDB table called Music, populate sample data into

it, establish a zero-ETL integration with Amazon Redshift, and observe the replication in action.

Getting ready
To complete this recipe, you will need an Amazon Redshift data warehouse deployed in the AWS

Region eu-west-1.

How to do it…
Create a new Music table using the DynamoDB console:

1. Sign in to the AWS Management Console and open the DynamoDB console (https://

console.aws.amazon.com/dynamodb/).

https://console.aws.amazon.com/dynamodb/
https://console.aws.amazon.com/dynamodb/

Chapter 4 111

2. In the left navigation pane, choose Tables and then select Create table. On the Table

details page, for Table name, enter Music, for Partition key, enter Artist, and for Sort

key, enter SongTitle. Then, select Create table to create the table:

Figure 4.10 – Create a DynamoDB table

3. Next, create a zero-ETL integration for this table into Amazon Redshift, navigate to the

DynamoDB console (https://console.aws.amazon.com/dynamodb/), and choose Tables

in the left navigation pane. On the Tables page, select the Music table and then Explore

table items. In the Items returned section, select Create item.

4. On the Create item page, select Add new attribute, and then select Number. For Attri-

bute name, enter Awards. Repeat this process to create an attribute called AlbumTitle

of type String.

https://console.aws.amazon.com/dynamodb/

Zero-ETL Ingestions112

Following this process, create three items with the following values:

Artist SongTitle AlbumTitle Awards

No One You Know Call Me Today Somewhat Famous 1

Acme Band Happy Day Songs About Life 10

Acme Band PartiQL Rocks Another Album Title 8

Figure 4.11 – Create items in a DynamoDB table

Next, to create the zero-ETL integration for the Music table, follow these steps:

1. Navigate to the Amazon Redshift Zero-ETL integrations page (https://console.aws.

amazon.com/redshiftv2/home#/zero-etl-integrations) and choose Create Dyna-

moDB integration, as shown in the following screenshot:

Figure 4.12 – Create DynamoDB integration

https://console.aws.amazon.com/redshiftv2/home#/zero-etl-integrations
https://console.aws.amazon.com/redshiftv2/home#/zero-etl-integrations

Chapter 4 113

2. For Integration Name, enter a representative name, such as music-integration-to-

redshift, and click Next.

3. On the Select source page, click Browse DynamoDB tables and choose the Music table. If

there are any parameters needed for the zero-ETL integration that are missing, the setup

wizard will provide a Fix it for me option, as shown in the following screenshot. Select

that option and click Next.

The Fix it for me feature will automatically apply the necessary prerequisites to the

source DynamoDB table (https://docs.aws.amazon.com/amazondynamodb/latest/

developerguide/RedshiftforDynamoDB-zero-etl.html#RedshiftforDynamoDB-zero-

etl-prereqs).

Figure 4.13 – Choose a DynamoDB table

4. A screen pops up asking you to review the changes that the setup wizard will make. Select

Continue.

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/RedshiftforDynamoDB-zero-etl.html#RedshiftforDynamoDB-zero-etl-prereqs
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/RedshiftforDynamoDB-zero-etl.html#RedshiftforDynamoDB-zero-etl-prereqs
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/RedshiftforDynamoDB-zero-etl.html#RedshiftforDynamoDB-zero-etl-prereqs

Zero-ETL Ingestions114

5. On the Target page, choose the target Amazon Redshift data warehouse you want to

replicate the data to. If a Fix it for me option shows up, select it and click Next:

Figure 4.14 – Select the target Amazon Redshift data warehouse

6. If you chose Fix it for me option in the previous step, a Review Changes page will pop

up. Review it and then click Reboot and continue.

7. On the Add tags and Encryption page, you can optionally add tags and configure en-

cryption. Then, click Next.

8. On the Review and Create page, wait until the banner changes from The target data

warehouse update is in progress. If you exit this flow, unsaved changes will be discarded.
However, the target data warehouse will still be updated to a new banner saying Target

data warehouse successfully updated. Then, select Create DynamoDB integration� Wait

until the integration state is Active.

Chapter 4 115

9. You will notice a Create database from integration button on the integration page. Select

it:

Figure 4.15 – Create database from integration

10. On the Create database from integration page, for Destination database name, enter a

descriptive name like music and then select Create database:

Figure 4.16 – Choose database name and create database

Zero-ETL Ingestions116

11. Navigate to Amazon Redshift Query Editor V2 (https://console.aws.amazon.com/

sqlworkbench/home#/client) and connect to the target database. Under native data-

bases, you will see the database you created, for example, music, and under it, under the

public schema, you will see the replicated DynamoDB table, Music in this case. You can

start analyzing that table by running select queries, as shown in the following screenshot:

Figure 4.17 – Query the table in Amazon Redshift

12. In the Music table, notice that the partition key Artist and sort key SongTitle from the

DynamoDB table are created as columns in the target Amazon Redshift table. They become

the distribution key and sort key, respectively, on the Amazon Redshift table. The entire

DynamoDB item is available in the value field in semi-structured format with the SUPER

datatype. You can query it using PartiQL, as shown in the following SQL:

select "Artist", "SongTitle"

, value."AlbumTitle"."S" :: varchar(30) as "AlbumTitle"

, value."Awards"."N" :: int as "AlbumTitle"

from music.public."Music";

Figure 4.18 – Query the replicated DynamoDB data using Amazon Redshift

Query Editor V2

https://console.aws.amazon.com/sqlworkbench/home#/client
https://console.aws.amazon.com/sqlworkbench/home#/client

Chapter 4 117

How it works…
On activation, the integration exports the full DynamoDB table to populate the Amazon Redshift

database. The time it takes for this initial process to complete depends on the DynamoDB table

size. The zero-ETL integration then incrementally replicates updates from DynamoDB to Ama-

zon Redshift every 15 minutes using DynamoDB incremental exports. This means the replicated

DynamoDB data in Amazon Redshift is kept up to date automatically.

Once configured, users can analyze the DynamoDB data in Amazon Redshift using standard SQL
clients and tools, without impacting DynamoDB table performance. You can increase the refresh

interval and set it to 900–432,000 seconds (15 minutes–5 days) using the CREATE DATABASE/

ALTER DATABASE command. Take the following example:

ALTER DATABASE sample_integration_db INTEGRATION SET REFRESH_INTERVAL

1500;

Ingesting data from SaaS applications like Salesforce
using zero-ETL integration
Using zero-ETL integrations for Amazon Redshift, you can seamlessly ingest data from software-

as-a-service (SaaS) applications, such as Facebook ads, Instagram ads, Salesforce, Salesforce

Marketing Cloud Account Engagement, SAP OData, ServiceNow, Zendesk, and Zoho, into AWS

analytics services such as Amazon Redshift and Amazon S3. This native integration eliminates

the need for complex ETL pipelines, additional AWS services, or third-party tools for data repli-

cation. The zero-ETL integration process begins with an initial bulk load of your SaaS data into

Redshift, followed by continuous synchronization of any changes. You can create one zero-ETL

integration per SaaS application, and while the minimum latency is 1 hour, you have the option

to configure it to sync data at specific intervals based on your requirements. By leveraging this
solution, you can get fresher SaaS data for analytics, AI/ML, and reporting, leading to more ac-

curate and timely insights for use cases like business dashboards, customer behavior analysis,

and data quality monitoring.

In this recipe, we will create a zero-ETL integration between the SaaS application Salesforce to

Amazon Redshift.

Zero-ETL Ingestions118

Getting ready
To complete this recipe, you will need:

• An Amazon Redshift data warehouse deployed in the AWS Region eu-west-1.

• Amazon Redshift data warehouse admin user credentials.

• Access to any SQL interface, such as a SQL client or Amazon Redshift Query Editor.

• Navigate to Secret Manager (https://console.aws.amazon.com/secretsmanager/

listsecrets) and create a secret named salesforce-secret:

• Select Store a New Secret.

• For Secret Type, choose Other type of secret, and in the Key/value pairs section,

for Key, enter Consumer Secret, and for Value, enter USER_MANAGED_CLIENT_

APPLICATION_CLIENT_SECRET. Then, click Next:

Figure 4.19 – Create a Salesforce secret

• For the secret name, enter salesforce-secret. Click Next and then Next again

on the next page, and then select Store.

• Create an IAM role named sales-force-glue-role:

• Navigate to IAM (https://console.aws.amazon.com/iam/home).

• In the left navigation pane, choose Roles, and on the page that opens up, select

Create Role.

• On the Select Trusted Entity page, in the Trusted entity type section, choose AWS

Service. In the Use case section, for Service or use case, choose Glue.

• Click Next and Next again. On the Name, review and create page, for Role name,

enter salesforce-glue-role, and then select Create Role.

https://console.aws.amazon.com/secretsmanager/listsecrets
https://console.aws.amazon.com/secretsmanager/listsecrets
https://console.aws.amazon.com/iam/home

Chapter 4 119

• On the roles page, for salesforce-glue-role, choose Add permissions, and with-

in that, choose Create inline policy. For Policy Editor, choose JSON and paste

the following JSON:

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Effect": "Allow",

 "Action": [

 "secretsmanager:DescribeSecret",

 "secretsmanager:GetSecretValue",

 "secretsmanager:PutSecretValue",

 "ec2:CreateNetworkInterface",

 "ec2:DescribeNetworkInterface",

 "ec2:DeleteNetworkInterface"

],

 "Resource": "*"

 }

]

}

• Name the policy secretmanager-ec2 and click Save.

• An IAM role attached to an Amazon Redshift data warehouse that can access Amazon S3;

we will reference it in the recipe as [Your-Redshift_Role].

• An Amazon S3 bucket created in eu-west-1; we will reference it as [Your-Amazon_S3_

Bucket].

Zero-ETL Ingestions120

• Create a free Salesforce developer account (https://developer.salesforce.com/form/

signup/freetrial.jsp). Note down the sign-in information and the easy login URL from

the confirmation email you received. We will refer to it as [Your-salesforce_login_URL]:

Figure 4.20 – Confirmation email after signing up for a free trial

How to do it…
Create a connection in AWS Glue for Salesforce:

1. Navigate to the AWS Glue console (https://console.aws.amazon.com/glue/home).

2. In the left navigation pane, choose Data connections, and in the Connections section,

select Create connection:

Figure 4.21 – Create a new AWS Glue connection

https://developer.salesforce.com/form/signup/freetrial.jsp
https://developer.salesforce.com/form/signup/freetrial.jsp
https://console.aws.amazon.com/glue/home

Chapter 4 121

3. On the Choose data source page, search for salesforce. Choose Salesforce - new and

then click Next:

Figure 4.22 – Choose Salesforce as the source for connection

4. On the Connection details page, for Instance URL, enter [your-salesforce_login_URL].

For Salesforce environment, choose Production. For IAM service role, select salesforce-

glue-role:

Figure 4.23 – Provide Salesforce connection details – part 1

Zero-ETL Ingestions122

5. In the Authentication section, for OAuth grant type, choose Authorization Code. For

AWS Secret, choose salesforce-secret. Scroll down and choose Test connection:

Figure 4.24 – Provide Salesforce connection details – part 2

6. You will be redirected to a Salesforce page to enter your login credentials and allow access.

Once this is successful, you will see a Connection test successful message:

Chapter 4 123

Figure 4.25 – Validate Salesforce connection

7. Once the connection is validated, click Next. In the Connection Properties section, for the

name, choose salesforce-connection and then click Next. On the Review and Create

page, review the details and select Create Connection.

Zero-ETL Ingestions124

Create a zero-ETL integration in the AWS Glue console between Salesforce and Amazon Redshift:

1. Navigate to the AWS Glue console (https://console.aws.amazon.com/glue/home) and

select Zero-ETL integrations from the left navigation pane. Then, select Create zero-ETL

integration:

Figure 4.26 – Create Zero-ETL integration

2. On the Select Source page, you will see various SaaS applications, like Facebook Ads,

Instagram Ads, Salesforce, Salesforce Marketing Cloud Account Engagement, SAP OData,

ServiceNow, Zendesk, and Zoho. You can create zero-ETL integrations from any of the SaaS

applications into Amazon Redshift. For this recipe, choose Salesforce and then click Next.

3. On the Configure source and target page, for Salesforce connection, choose sales-

force-connection. For Source IAM role, choose salesforce-glue-role:

Figure 4.27 – Provide source details for the zero-ETL integration

4. In the Select Source Data section, you will see the Salesforce tables available. Choose the

Account, Opportunity, and Contact tables for this recipe.

https://console.aws.amazon.com/glue/home

Chapter 4 125

5. In the Target details section, choose Use the current account for AWS account. For Data

warehouse or catalog, choose your target Amazon Redshift data warehouse. If your target

data warehouse doesn’t have the parameters required for this zero-ETL integration, a Fix

it for me option will appear. Select it, review the tables in Output settings, and click Next:

Figure 4.28 – Provide target details for the zero-ETL integration

Zero-ETL Ingestions126

6. If you chose Fix it for me in the previous step, a Review changes popup will appear.

Review the changes that the setup wizard will apply on your target Amazon Redshift data

warehouse and then select Continue.

7. On the Configure Integration page, notice that the refresh interval is 60 minutes. In the In-

tegration details section, for Name, enter salesforce-redshift-zetl-integ. Click Next.

8. On the Review and Create page, review the integration details and click Create and launch

integration. Wait until the integration status changes to Active. It takes around 10–15

minutes for the integration to be active.

9. Once the integration is active (refresh the page to get the latest status), you will notice a

dialog box with the Create database from integration option. Select it:

Figure 4.29 – Create database from integration – part 1

10. On the Create database from integration page that opens, for Destination database

name, enter salesforce and select Create database:

Figure 4.30 – Create database from integration – Part 2

Chapter 4 127

11. Navigate to Amazon Redshift Query Editor V2 (https://console.aws.amazon.com/

sqlworkbench/home#/client) and connect to the target database. Under native databases,

you will see the database you created, for example, salesforce, and under it, under the

public schema, you will see the tables Account, Opportunity, and Contact. You can start

analyzing that table by running select queries, as shown in the following screenshot:

select count(0) from salesforce.public."Account";

Figure 4.31 – Query Salesforce data in Amazon Redshift

12. Log in to your Salesforce developer account and select Account and then + New Account.

On the New Account page, for Account Name, enter Test Account and click Save:

Figure 4.32 – Create a new account using a Salesforce developer account

https://console.aws.amazon.com/sqlworkbench/home#/client
https://console.aws.amazon.com/sqlworkbench/home#/client

Zero-ETL Ingestions128

13. Go back to Amazon Redshift Query Editor V2 after 60 minutes and query the Account

table again. You will notice that the count of accounts has increased by 1 to 14. As of the

time of writing, the minimum latency between applications like Salesforce and Amazon

Redshift is 60 minutes:

select count(0) from salesforce.public."Account";

Figure 4.33 – Query Amazon Redshift for updated account count

14. Query Amazon Redshift for the account name Test Account using the following SQL

statement:

select * from salesforce.public."Account"

where "Name" = 'Test Account';

Figure 4.34 – Query Amazon Redshift for updated account details

Chapter 4 129

Ingesting streaming data from Amazon Kinesis Data
Streams (KDS)
Streaming data is a continuous flow of data originating from sources like IoT devices, log files,
websites, and more. Ingesting this streaming data into Amazon Redshift allows running near-

real-time analytics by combining it with historical and operational data to produce actionable

insights. For example, analyzing sensor data streams from manufacturing equipment can help

predict failures and enable preventive maintenance.

In this recipe, we will simulate a product review data stream to be ingested into an Amazon Red-

shift data warehouse (serverless or provisioned cluster) materialized view using Amazon KDS.

KDS provides a seamless integration to capture, process, and load streaming datasets directly into

Redshift materialized views configured for streaming ingestion. As the stream data arrives, it can
be parsed and mapped to the materialized view’s schema using SQL functions like JSON_PARSE.

The materialized view then provides low-latency, continuous access to the latest streaming data

for running analytics queries on the ingested data in near-real time.

Getting ready
To complete this recipe, you will need:

• An Amazon Redshift data warehouse deployed in the AWS Region eu-west-1.

• Amazon Redshift data warehouse admin user credentials.

• Access to any SQL interface, such as a SQL client or Amazon Redshift Query Editor.

• Access to Kinesis Data Generator. This is a UI that helps to send test data to Amazon Ki-

nesis. Use this blog post to configure the open source Kinesis Data Generator (https://
aws.amazon.com/blogs/big-data/test-your-streaming-data-solution-with-the-

new-amazon-kinesis-data-generator/).

• The ARN of the IAM role attached to your Amazon Redshift data warehouse. We will refer

to it as [Your-Redshift-Role].

https://aws.amazon.com/blogs/big-data/test-your-streaming-data-solution-with-the-new-amazon-kinesis-data-generator/
https://aws.amazon.com/blogs/big-data/test-your-streaming-data-solution-with-the-new-amazon-kinesis-data-generator/
https://aws.amazon.com/blogs/big-data/test-your-streaming-data-solution-with-the-new-amazon-kinesis-data-generator/

Zero-ETL Ingestions130

How to do it…
This recipe will illustrate the loading of product reviews data that is being streamed using KDS

into Amazon Redshift:

1. Navigate to the AWS Management Console, search for Kinesis, and navigate to the Amazon

Kinesis service home page. In the left navigation menu, choose Data streams, and then

select Create data stream, as shown in the following screenshot:

Figure 4.35 – Creating an Amazon KDS data stream

2. Give a name to the data stream, such as product_reviews_stream. For Capacity mode,

choose On-demand. Leave the other options as the defaults and then select Create data

stream to initiate creation. Wait until the status of the stream is Active, as shown in the

following screenshot, before you go to the next step:

Figure 4.36 – AKS data stream is active

Chapter 4 131

3. Now, let’s use Amazon Kinesis Data Generator (https://github.com/awslabs/amazon-

kinesis-data-generator) to produce streaming data and send it to the product-re-

views-stream data stream as follows:

Figure 4.37 – Amazon Kinesis Data Generator

4. Here, you will use the stream/delivery stream as product_review_stream to send the

streaming data and copy-paste the template from https://github.com/PacktPublishing/

Amazon-Redshift-Cookbook-2E/blob/main/Chapter04/kinesis_data_generator_

template.json to generate the product reviews data:

{

 "marketplace": "{{random.arrayElement(

 ["US","UK","JP"]

)}}",

…

 "review_headline": "{{commerce.productAdjective}}",

 "review_body": "{{commerce.productAdjective}}",

 "review_date": "{{date.now("YYYY-MM-DD")}}",

 "year":{{date.now("YYYY")}}

}

https://github.com/awslabs/amazon-kinesis-data-generator
https://github.com/awslabs/amazon-kinesis-data-generator
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter04/kinesis_data_generator_template.json
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter04/kinesis_data_generator_template.json
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter04/kinesis_data_generator_template.json

Zero-ETL Ingestions132

5. In your Amazon Redshift data warehouse, you can now create an external schema pointing

to Kinesis and a materialized view to load data from the Kinesis data stream you created.

Navigate to Amazon Redshift Query Editor V2, connect to your Amazon Redshift data

warehouse, and create an external schema and materialized view using the following

SQL statements:

CREATE EXTERNAL SCHEMA kds

FROM KINESIS

IAM_ROLE '[Your-Redshift_Role]';

CREATE MATERIALIZED VIEW mv_product_reviews_from_kds

AUTO REFRESH YES AS

 SELECT approximate_arrival_timestamp,

 partition_key,

 shard_id,

 sequence_number,

 json_parse(kinesis_data) as payload

 FROM kds."product_reviews_stream"

6. The payload field in the materialized view contains the raw data. It has the SUPER datatype

as it is in JSON format. You can use PartiQL to un-nest the JSON. In Query Editor V2, run

the following SQL statement to view the data. The first statement enables a case-sensitive

identifier as the semi-structured attribute names can be case-sensitive:

SET enable_case_sensitive_identifier TO true;

select

 payload."marketplace" :: varchar,

 payload."customer_id" :: varchar,

 payload."review_id" :: varchar,

 payload."product_id" :: varchar

from

 mv_product_reviews_from_kds;

Chapter 4 133

Figure 4.38 – Query streaming materialized view

Ingesting streaming data from Amazon Managed
Streaming for Apache Kafka (MSK)
In addition to KDS, Amazon Redshift also supports streaming ingestion directly from Amazon

MSK, which is a fully managed Apache Kafka service. This allows ingesting streaming data from

sources like database log files, IoT sensor data, clickstreams, and more that are already producing
data to Kafka topics.

In this recipe, we will see how data from Amazon MSK can be loaded in near-real time to an

Amazon Redshift data warehouse (serverless or provisioned cluster). The process works like

Kinesis—an Amazon Redshift materialized view is configured to consume data from an Amazon
MSK Kafka topic. As new records are published to the topic, they flow directly into the material-
ized view without intermediate storage. SQL functions like JSON_PARSE can parse and map the

streaming data to the view’s schema on arrival.

The materialized view provides low-latency querying access to this freshly ingested streaming

data combined with existing data in Redshift tables. This enables running real-time analytics

queries and dashboards on the continuous data stream. Streaming ingestion from MSK can allow

the ingestion of hundreds of megabytes per second per refresh into the materialized view, which

can optionally be set to auto-refresh for continuous ingestion.

Zero-ETL Ingestions134

Getting ready
To complete this recipe, you will need:

• An Amazon Redshift data warehouse deployed in the AWS Region eu-west-1.

• Amazon Redshift data warehouse admin user credentials.

• Access to any SQL interface, such as a SQL client or Amazon Redshift Query Editor.

• The ARN of the IAM role attached to your Amazon Redshift data warehouse. We will refer

to it as [Your-Redshift-Role].

• An MSK cluster. For instructions on how to create one, please refer to https://docs.aws.

amazon.com/msk/latest/developerguide/create-cluster.html.

• Create a topic in your MSK cluster where your data producer can publish data (https://

docs.aws.amazon.com/msk/latest/developerguide/create-topic.html).

• A data producer to write data to the topic in your MSK cluster. Refer to msk-data-generator

to understand how to send sample data to an MSK cluster (https://github.com/awslabs/

amazon-msk-data-generator/tree/main).

How to do it…
This recipe will illustrate the loading of product reviews data that is being streamed using Amazon

MSK into Amazon Redshift:

1. In your Amazon Redshift data warehouse, create an external schema pointing to Amazon

MSK and a materialized view to load data from the Kafka topic you created. Navigate to

Amazon Redshift Query Editor V2, connect to your Amazon Redshift data warehouse, and

create an external schema and materialized view using the following SQL statements:

CREATE EXTERNAL SCHEMA msk_schema

FROM KAFKA

IAM_ROLE 'iam-role-arn'

AUTHENTICATION { none | iam }

CLUSTER_ARN 'msk-cluster-arn';

CREATE MATERIALIZED VIEW mv_orders_stream

AUTO REFRESH YES AS

SELECT kafka_partition,

 kafka_offset,

 refresh_time,

https://docs.aws.amazon.com/msk/latest/developerguide/create-cluster.html
https://docs.aws.amazon.com/msk/latest/developerguide/create-cluster.html
https://docs.aws.amazon.com/msk/latest/developerguide/create-topic.html
https://docs.aws.amazon.com/msk/latest/developerguide/create-topic.html
https://github.com/awslabs/amazon-msk-data-generator/tree/main
https://github.com/awslabs/amazon-msk-data-generator/tree/main

Chapter 4 135

 JSON_PARSE(kafka_value) as Data

FROM msk_schema."[Your-Topic-Name]"

WHERE CAN_JSON_PARSE(kafka_value);

Amazon Redshift can automatically refresh the streaming materialized view with new

data. Auto-refresh needs to be turned on explicitly for a materialized view. To do this,

specify AUTO REFRESH in the materialized view definition.

2. The column kafka_value has the raw data and its datatype is SUPER. You can use PartiQL

to extract the fields of interest, as shown in the following SQL:

SELECT

 data."OrderID"::INT4 as OrderID

 ,data."ProductID"::VARCHAR(36) as ProductID

 ,data."ProductName"::VARCHAR(36) as ProductName

 ,data."CustomerID"::VARCHAR(36) as CustomerID

 ,data."CustomerName"::VARCHAR(36) as CustomerName

 ,data."Store_Name"::VARCHAR(36) as Store_Name

 ,data."OrderDate"::TIMESTAMPTZ as OrderDate

 ,data."Quantity"::INT4 as Quantity

 ,data."Price"::DOUBLE PRECISION as Price

 ,data."OrderStatus"::VARCHAR(36) as OrderStatus

 ,"kafka_partition"::BIGINT

 ,"kafka_offset"::BIGINT

FROM mv_orders_stream;

How it works…
Streaming ingestion allows low-latency, high-speed data ingestion directly from Amazon KDS

or Amazon MSK into an Amazon Redshift materialized view, without using temporary storage.

Amazon Redshift also supports streaming ingestion from the Confluent-managed cloud and
self-managed Apache Kafka clusters on Amazon EC2 instances, expanding its capabilities beyond

Amazon KDS and Amazon MSK. Amazon Redshift supports mutual Transport Layer Security

(mTLS) as the authentication protocol for secure communication between Amazon Redshift and

Kafka. The Redshift data warehouse or serverless workgroup acts as the consumer of the data

stream. As data arrives, it can be parsed using SQL functions to map it to the materialized view’s

columns. When refreshed, Redshift ingests data from the allocated Kinesis shards or Kafka parti-

tions until the view is fully updated with the latest stream data. Ingestion can process hundreds

of megabytes per second per refresh.

Zero-ETL Ingestions136

The materialized view can use auto-refresh to automatically ingest new streaming data as it arrives

by specifying the AUTO REFRESH option when creating or altering the view. With auto-refresh

enabled, the view continuously updates without manual intervention, allowing low-latency

access to the latest streaming data as part of the normal Redshift workload.

Figure 4.39 – How streaming ingestion works

You can remove records from a materialized view that’s used for streaming ingestion, using

TRUNCATE or DELETE:

truncate my_streaming_materialized_view;

delete from my_streaming_materialized_view;

Near-real-time ingestion of data from Amazon S3
using auto-copy
Amazon Redshift supports auto-copy support to simplify data loading from Amazon S3 into

Amazon Redshift. You can now set up continuous file ingestion rules to track your Amazon S3
paths and automatically load new files without the need for additional tools or custom solutions.
This also enables end users to have the latest data available in Amazon Redshift shortly after the

source data is available.

In this recipe, you will learn how to build automatic file ingestion pipelines in Amazon Redshift
when source files are located on Amazon S3 by using a simple SQL command. You will enable
auto-copy using auto-copy jobs, learn how to monitor jobs, and review considerations and best

practices for this feature.

Chapter 4 137

Getting ready
To complete this recipe, you will need:

• An Amazon Redshift data warehouse deployed in the AWS Region eu-west-1.

• Amazon Redshift data warehouse admin user credentials.

• Access to any SQL interface, such as a SQL client or Amazon Redshift Query Editor.

• An Amazon S3 bucket. We will refer to it as [Your-S3-Bucket-Name].

• Add the following to the Amazon S3 bucket policy:

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Sid": "Auto-Copy-Policy-01",

 "Effect": "Allow",

 "Principal": {

 "Service":"redshift.amazonaws.com"

 },

 "Action": [

 "s3:GetBucketNotification",

 "s3:PutBucketNotification",

 "s3:GetBucketLocation"

],

 "Resource": "arn:aws:s3:::<<your-s3-bucket-name>>",

 "Condition": {

 "StringLike": {

 "aws:SourceArn": "arn:aws:redshift:<region-

name>:<aws-account-id>:integration:*",

 "aws:SourceAccount": "<aws-account-id>"

 }

 }

 }

]

}

Zero-ETL Ingestions138

How to do it…
Set up Amazon S3 event integration:

1. Navigate to the Amazon Redshift console (https://console.aws.amazon.com/redshift/).

Under the Integrations section, choose S3 event integrations and then select Create S3

event integration:

Figure 4.40 – Create S3 event integration

2. For Integration name, enter orders-s3-redshift-integration and then click Next.

3. On the Select source page, select Browse S3 buckets and then choose the S3 bucket you

want to use for this recipe. Click Next. Note that when browsing S3 buckets, only buckets

that are in the same AWS account and same AWS Region are shown.

4. On the Select target page, for AWS Account, choose Use the current account. Then, click

the Browse Redshift data warehouses button and select your target Amazon Redshift

data warehouse.

5. If your target Amazon Redshift data warehouse doesn’t have the necessary parameters

for auto-copy, you will see a Fix it for me option. Select it and click Next. If you chose Fix

it for me, after clicking Next, you will see a popup for Review changes for you to review

the changes that the zero-ETL integration setup wizard will apply.

https://console.aws.amazon.com/redshift/

Chapter 4 139

Review them carefully and click Continue:

Figure 4.41 – Provide target details for S3 event integration

Zero-ETL Ingestions140

6. On the next page, click Next, and on the Review and create page, review the details of

the integration and select Create S3 event integration.

7. Once the integration is created, on the integration details page, you will see an option

to Create autocopy job. Click on it and you will be directed to Amazon Redshift Query

Editor V2:

Figure 4.42 – Create autocopy job

8. In Amazon Redshift Query Editor V2, first create an orders table using the following DDL:

create table s3_orders (

 o_orderkey int8 not null,

 o_custkey int8 not null,

 o_orderstatus char(1) not null,

 o_totalprice numeric(12,2) not null,

 o_orderdate date not null,

 o_orderpriority char(15) not null,

 o_clerk char(15) not null,

 o_shippriority int4 not null,

 o_comment varchar(79) not null,

 Primary Key(O_ORDERKEY)

) distkey(o_orderkey) sortkey(o_orderdate, o_orderkey) ;

9. Next, create an auto-copy job that can load data from your S3 bucket into this table using

the following SQL statement. Replace [Your-S3-Bucket-Name] and [Your-Redshift-

Role] with your S3 bucket name and the Amazon Redshift data warehouse’s IAM role:

COPY s3_orders

FROM 's3://[Your-S3-Bucket-Name]/orders'

IAM_ROLE [Your-Redshift-Role]

FORMAT CSV

gzip

JOB CREATE job_orders AUTO ON;

Chapter 4 141

10. In your S3 bucket [Your-S3-Bucket-Name], create a folder named dt=2024-01-09 and

upload the file (https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-
2E/blob/main/Chapter04/2024-01-09-000.gz) to that folder.

11. This file will automatically be copied into the s3_orders table within 30 seconds after

you upload it. Verify by running a count of records on the s3_orders table using the

following SQL:

Select count(0) from s3_orders;

Figure 4.43 – Count from S3_orders after the first file upload

12. In your S3 bucket [Your-S3-Bucket-Name], create another folder named dt=2024-01-

11 and upload the file (https://github.com/PacktPublishing/Amazon-Redshift-
Cookbook-2E/blob/main/Chapter04/2024-01-11-000.gz) to that folder.

13. The data from this file will also automatically be copied into the s3_orders table within

30 seconds after you upload it. Verify by running a count of records on the s3_orders

table using the following SQL:

Select count(0) from s3_orders;

Figure 4.44 – Count from S3_orders after the second file is uploaded

https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter04/2024-01-09-000.gz
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter04/2024-01-09-000.gz
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter04/2024-01-11-000.gz
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter04/2024-01-11-000.gz

Zero-ETL Ingestions142

How it works…
The auto-copy feature in Amazon Redshift leverages the S3 event integration to automatically

load data into Amazon Redshift and simplifies automatic data loading from Amazon S3. You can

enable Amazon Redshift auto-copy by creating auto-copy jobs. An auto-copy job is a database

object that stores, automates, and reuses the COPY statement for newly created files that land
in the S3 folder. The auto-copy job stores the list of files that are already loaded by the copy job
into the target Amazon Redshift table. When it notices any new file with a file name different
from what it already has, it automatically loads it into the table. Note that if you have updated

the contents of an existing file and did not change the file name, it will not be loaded into the
Amazon Redshift table.

You can create multiple auto-copy jobs from multiple Amazon S3 locations into the same Amazon

Redshift table. The following diagram illustrates this process:

Figure 4.45 – Automatic data ingestion from Amazon S3 into Amazon Redshift

If necessary, users can manually invoke an auto-copy job as shown in the following SQL:

copy job RUN <auto-copy job Name>

You can alter existing auto-copy jobs to disable AUTO ON using the following command:

copy job ALTER <auto-copy job Name> AUTO OFF

5
Scalable Data Orchestration for
Automation

AWS provides a rich set of native services to integrate a workflow. These workflows may involve
multiple tasks that can be managed independently, thereby taking advantage of purpose-built

services and decoupling them.

In this chapter, we will primarily focus on workflows such as an Extract, Transform, and Load

(ETL) process that is used to refresh the data warehouse. We will illustrate different options that

are available using the individual recipes, but they are interchangeable depending on your use case.

The following recipes are discussed in this chapter:

• Scheduling queries using Amazon Redshift Query Editor V2

• Event-driven applications using Amazon EventBridge on Amazon Redshift provisioned

clusters

• Event-driven applications using AWS Lambda on Amazon Redshift provisioned clusters

• Orchestration using AWS Step Functions on provisioned clusters

• Orchestration using Amazon Managed Workflows for Apache Airflow on provisioned
clusters

Scalable Data Orchestration for Automation144

Technical requirements
Here are the technical requirements to complete the recipes in this chapter:

• You need access to the AWS console.

• The AWS administrator should create an IAM user by following Recipe 1 in the Appendix.

This IAM user will be used in some of the recipes in this chapter.

• The AWS administrator should create an IAM role by following Recipe 3 in the Appendix.

This IAM role will be used in some of the recipes in this chapter.

• The AWS administrator should deploy the AWS CloudFormation template (https://

github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter05/

chapter_5_CFN.yaml) and create two IAM policies:

• An IAM policy attached to the IAM user, which will give them access to Amazon Redshift,

Amazon EC2, AWS CloudFormation, Amazon S3, Amazon SNS, Amazon Managed Work-

flows for Apache Airflow (MWAA), Amazon EventBridge, Amazon CloudWatch, Amazon

CloudWatch Logs, AWS Glue, AWS Lambda, and AWS Step Functions

• An IAM policy attached to the IAM role, which will allow Amazon Redshift data warehouse

to access Amazon S3, AWS Lambda, and Amazon EventBridge

• Attach an IAM role to the Amazon Redshift data warehouse (serverless or provisioned

cluster) endpoint by following Recipe 4 in the Appendix. Take note of the IAM role name;

we will reference it in the recipes as [Your-Redshift_Role].

• You need an Amazon Redshift data warehouse deployed in the AWS Region, eu-west-1.

• You need Amazon Redshift data warehouse master user credentials.

• You need access to any SQL interface, such as a SQL client or Amazon Redshift Query Editor.

• You need an AWS account number; we will reference it in recipes as [Your-AWS_Account_

Id].

• You need an Amazon S3 bucket created in eu-west-1; we will refer to it as [Your-Amazon_

S3_Bucket].

• You need the code files referenced in the GitHub repository (https://github.com/
PacktPublishing/Amazon-Redshift-Cookbook-2E/tree/main/Chapter05).

https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter05/chapter_5_CFN.yaml
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter05/chapter_5_CFN.yaml
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter05/chapter_5_CFN.yaml
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/tree/main/Chapter05
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/tree/main/Chapter05

Chapter 5 145

Scheduling queries using Amazon Redshift Query
Editor V2
Amazon Redshift Query Editor V2 (QEV2) allows users to schedule queries on the Redshift data

warehouse. Users can schedule long-running or time-sensitive queries, refresh materialized views

at regular intervals, and load or unload data.

In this recipe, we will automate the refresh of the customer_agg_mv materialized view, so that

the data is up to date when the base tables change.

Getting ready
To complete this recipe, you will need the following:

• Amazon Redshift data warehouse (serverless or provisioned cluster) endpoint deployed

in AWS Region eu-west-1

• IAM user with access to Amazon Redshift, Amazon Redshift QEV2, and Amazon Event-

Bridge

• IAM role attached to Amazon Redshift data warehouse that can access Amazon Event-

Bridge; we will reference it in the recipes as [Your-Redshift_Role]

• We will reuse the customer_agg_mv materialized view that was set up using the Chapter

2 recipe titled Managing materialized views in a database

How to do it…
1. Open Amazon Redshift QEV2 and connect to your data warehouse where you have created

finance.customer_agg_mv.

2. In the query editor, enter the following code:

REFRESH MATERIALIZED VIEW finance.customer_agg_mv

Scalable Data Orchestration for Automation146

3. Choose Schedule, which opens the Schedule query window. In the Schedule query win-

dow, there are four sections: Scheduler permissions, Query information, Scheduling

options, and Monitoring.

Figure 5.1: Schedule query using Amazon Redshift QEV2

4. In Scheduler permissions, enter the following details:

• IAM role: Select the created role that has access to schedule queries – [Your-

Redshift_Role].

• Authentication: There are two modes of authentication – Temporary credentials

and AWS Secret Manager. By default, Temporary credentials is selected, which

uses the GetCredentials IAM permission and the db user to generate the tem-

porary credentials. You can also select AWS Secret Manager, where you can use

secrets stored in AWS Secret Manager.

• Cluster or workgroup: Select the Amazon Redshift data warehouse.

Chapter 5 147

• Database name: Enter the database name.

Figure 5.2: Setting up the schedule options for refresh

Scalable Data Orchestration for Automation148

5. In Query information, enter the following details:

• Scheduled query name: Enter the recognizable name of the query

• Query description: You can type a query description

Figure 5.3: Setting up the schedule name and query

Chapter 5 149

6. In Scheduling options, you can schedule queries by Run frequency or Cron format.

Figure 5.4: Setting up the schedule interval

7. In the Monitoring section, you can optionally configure SNS notifications.

8. Choose Schedule query to save the schedule.

9. Choose Scheduled queries from the left pane. This will show a list of scheduled queries

and their respective state.

Figure 5.5: List of scheduled queries and their state

Scalable Data Orchestration for Automation150

How it works…
The Schedule option in Amazon Redshift QEV2 is a convenient way to run a SQL statement. You

can create a schedule to run your SQL statement at time intervals that match your business needs.

When it’s time for the scheduled query to run, Amazon EventBridge (https://aws.amazon.com/

eventbridge/) invokes the query.

Event-driven applications using Amazon EventBridge
on Amazon Redshift provisioned clusters
Event-driven data pipelines (where applications run in response to events) are increasingly used

by organizations. Event-driven architectures are loosely coupled and distributed. This provides

the benefit of decoupling producer and consumer processes, allowing greater flexibility in ap-

plication design.

In an event-driven application, one action automatically triggers another. For example, when

data arrives from a source system (the event), it automatically starts a chain of processing tasks

in other connected systems. At the end of this workflow, another event gets initiated to notify
end users about the completion of those transformations so that they can start analyzing the

transformed dataset.

In this recipe, you will see the use of Amazon EventBridge serving as an event bus. Amazon Event-

Bridge is a fully managed serverless event bus service that simplifies connecting with a variety
of your sources. Think of EventBridge as a smart postal service for your digital world. It picks up

messages and updates from everywhere – your own apps, the software services you use, and AWS

tools. Like a skilled mail carrier who knows exactly where each package should go, EventBridge

follows your instructions to deliver this information to the right destination at exactly the right

time. This creates a smooth, automated flow of information that keeps your entire system running
and responding in real time.

This recipe will use Amazon EventBridge to schedule the run of the Redshift data pipeline for the

parts table. Lambda functions will use the Amazon Redshift Data API to make asynchronous calls.

On the completion of the code execution, the pipeline will send an Amazon Simple Notification
Service (Amazon SNS) notification.

https://aws.amazon.com/eventbridge/
https://aws.amazon.com/eventbridge/

Chapter 5 151

Getting ready
To complete this recipe, you will need the following:

• An Amazon Redshift provisioned cluster deployed in the AWS Region eu-west-1. Note the

data warehouse ID; we will refer to it as [Your-Redshift_Cluster].

• Amazon Redshift provisioned cluster master user credentials. Note the username; we will

refer to it as [Your-Redshift_User].

• Access to any SQL interface, such as a SQL client or Amazon Redshift QEV2.

• An IAM user with access to Amazon SNS, Amazon EventBridge, and AWS Lambda.

• An IAM role with access to AWS Lambda; we will reference it in the recipes as [Your-

Redshift_Role].

• An AWS account number; we will reference it in the recipes as [Your-AWS_Account_Id].

How to do it…
1. Create a product reviews table in the Amazon Redshift database using a SQL client or QEV2:

CREATE TABLE daily_product_reviews

(

 marketplace VARCHAR(2),

 customer_id VARCHAR(32),

 review_id VARCHAR(24),

 product_id VARCHAR(24),

 product_parent VARCHAR(32),

 product_title VARCHAR(512),

 star_rating INT,

 helpful_votes INT,

 total_votes INT,

 vine CHAR(1),

 verified_purchase CHAR(1),

 review_headline VARCHAR(256),

 review_body VARCHAR(MAX),

 review_date DATE,

 YEAR INT

)

DISTSTYLE KEY DISTKEY (customer_id) SORTKEY (review_date);

Scalable Data Orchestration for Automation152

2. Create a materialized view (daily_product_review_fact_mv) using the results of the

query based on daily_product_reviews:

CREATE MATERIALIZED VIEW public.daily_product_review_fact_mv

AS

SELECT marketplace,

 product_id,

 COUNT(1) as count_rating,

 SUM(star_rating) as sum_rating,

 SUM(helpful_votes) AS total_helpful_votes,

 SUM(total_votes) AS total_votes,

 review_date

FROM public.daily_product_reviews

GROUP BY marketplace,

 product_id,

 review_date;

3. Create the stored procedure that will enable you to build the ETL pipeline:

 CREATE OR REPLACE PROCEDURE products_review_etl()

 AS $$

 BEGIN

 truncate public.product_reviews_daily;

 COPY public.product_reviews_daily FROM 's3://packt-

redshift-cookbook/amazon-reviews-pds/parquet/product_category=Home/'

 iam_role 'arn:aws:iam: [Your-AWS_Account_

Id]:role/redshift-spectrum'

 PARQUET ;

 REFRESH MATERIALIZED VIEW public.daily_product_review_

fact_mv;

 END;

 $$ LANGUAGE plpgsql;

4. Navigate to the AWS console and select Amazon SNS. From the menu on the left side,

click on Topics, choose Standard, and name it products-review-communication. This

SNS topic will be used for communication on the status of the data pipeline.

Chapter 5 153

Also, note down the ARN value; let’s call this [Your-SNS_ARN], as follows:

Figure 5.6: products-review-communication

5. To subscribe to the products-review-communication topic, create a subscription. Select

the ARN for the products-review-communication topic. Use the Protocol email and give

it your email ID. Select Create subscription:

Figure 5.7: Creating the Amazon SNS subscription

Scalable Data Orchestration for Automation154

6. You will receive an email to confirm the subscription for the product-review-
communication topic. Select Subscription confirmed.

Next in the pipeline, we will create a Lambda function that will execute the stored pro-

cedure using the Redshift Data API. This function will also check the status of the query

execution and send notifications on the execution status.

7. Navigate to the AWS console, select AWS Lambda, choose Functions from the left-hand

menu, and create the function as follows:

• Function name: product-reviews-etl-using-dataapi

• Runtime: Python 3�13

• Change default execution role: Choose the Lambda role you created in the Getting

started section

Figure 5.8: Creating the AWS Lambda function

• Function code: Copy the code for the product-reviews-etl-using-dataapi func-

tion from https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-

2E/blob/main/Chapter05/src/event-bridge-lambda-function.py

• Choose Deploy

• Change basic settings: Set the Lambda timeout to 30 seconds

https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter05/src/event-bridge-lambda-function.py
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter05/src/event-bridge-lambda-function.py

Chapter 5 155

8. Let’s now create the scheduler event rule to trigger the product-reviews-etl-using-

dataapi Lambda function. Navigate to the AWS console, select Amazon EventBridge,

choose Rules from the left-hand menu, select default from the Event bus dropdown, and

click on Create rule. Select the following options in the rules:

• Name: schedule-productsreview-etl-execution

• Define pattern: Schedule

• Cron expression: 0 20 ? * MON-FRI *

9. In Select targets, choose Lambda function for the target and pick the product-reviews-

executesql function from the dropdown, as follows:

Figure 5.9: Selecting the targets for the Amazon EventBridge rules

 Note

This rule will trigger at 3 AM UTC from Monday to Friday.

Scalable Data Orchestration for Automation156

10. Under Configure input, select Constant (JSON text) and provide the following, replacing

[Your-Redshift_Data warehouse], [Your-Redshift_User], and [Your-SNS_ARN] with

the respective values and click Create:

{

 "Input":{

 "redshift_data warehouse_id":"[Your-Redshift_Data warehouse]",

 "redshift_database":"dev",

 "redshift_user":"[Your-Redshift_User]",

 "action":"execute_sql",

 "sql_text":"call

 products_review_etl();",

 "sns_topic_arn":"[Your-SNS_ARN]"

 }

}

11. Let’s create another rule to check the status of the stored procedure execution. Click on

Rules from the left menu and select the options as follows:

Figure 5.10: Creating a notify-productreview-execution-status rule

Chapter 5 157

• Name: notify-productreview-execution-status

• Define pattern: Event pattern

• Event matching pattern: Custom pattern

• Event pattern: Provide the following, replacing [Your-AWS_Account_Id] and

[Your-Redshift_Role] with their respective values. Then, select Save:

{

 "source": [

 "aws.redshift-data"

],

 "detail": {

 "principal": [

 "arn:aws:sts::[Your-AWS_Account_Id]:assumed-role/[Your-

Redshift_Role]/product-reviews-executesql"

]

 }

}

12. Under Target, select Lambda function and choose the product-reviews-executesql

function, as follows:

Figure 5.11: Configuring targets for the notify-productreview-execution-status rule

Scalable Data Orchestration for Automation158

13. Choose Input transformer and enter {"body":"$.detail"} in the input path.

14. In the Input template textbox, enter the following, replacing [Your-Redshift_Data

warehouse], [Your-Redshift_User], and [Your-SNS_ARN] with the respective values,

and click on Create:

{"Input":{"redshift_data warehouse_id":"[Your-Redshift_Data

warehouse]","redshift_database":"dev","redshift_user":"[Your-

Redshift_User]","action":"notify","subject":"Extract Load Transform

process completed in Amazon Redshift","body":[body],"sns_topic_

arn":"[Your-SNS_ARN]"}}

15. When the set schedule is met, the Lambda function will trigger. To validate that the

event pipeline is working correctly, navigate to the AWS console and select CloudWatch.

From the left menu, choose Log Groups and filter for the product-reviews-executesql

Lambda function.

Figure 5.12: Verifying the Lambda function trigger using Cloudwatch

Chapter 5 159

16. On completion of the query, you will receive an email notification on the completion status:

Figure 5.13: Email notification on completion of the event

17. Let’s also validate the query execution on Amazon Redshift. In the AWS console, navigate

to Amazon, click on Query monitoring, and notice the product_review_etl call in the

list to confirm successful execution.

Figure 5.14: Verifying query execution using the Amazon Redshift console

How it works…
Amazon EventBridge is used to orchestrate the product reviews data pipeline. Here is the archi-

tecture of this setup:

Figure 5.15: Architecture of Amazon EventBridge setup

Scalable Data Orchestration for Automation160

This workflow uses Amazon EventBridge to invoke the AWS Lambda function based on a schedule.
AWS Lambda executes the data pipeline queries through the Amazon Redshift Data API. Amazon

Redshift publishes custom notifications through Amazon SNS for the completion and notifies the
users. You are able to integrate a serverless decoupled pipeline that is scalable.

EventBridge allows you to connect applications using events. An event is a trigger when the system

state changes that can be used to drive a workflow such as ETL. This also allows you to integrate
your own AWS applications with microservices, SaaS applications, and custom applications as

event sources that publish events to an event bus.

Event-driven applications using AWS Lambda on
Amazon Redshift provisioned clusters
AWS Lambda helps you build an event-driven microservice. This serverless process can be in-

voked using a variety of events such as when a file arrives, when a notification is received, and
so on. This helps build a decoupled data workflow that can be invoked as soon as the upstream
dependencies are met, instead of a schedule-based workflow. For example, let’s say we have a
website that is continuously sending clickstream logs every 15 minutes into Amazon S3.

Instead of accumulating all the log files and processing them at midnight in a typical ETL process,
Amazon S3 can send an event to a Lambda function when an object is created and processed

immediately. This provides several advantages, such as processing in smaller batch sizes to meet

an SLA and to have the data current within the provisioned cluster.

In this recipe, you will learn how to use Python-based AWS Lambda to copy data into Amazon

Redshift as soon as the file arrives at the Amazon S3 location.

There are several ways to invoke an AWS Lambda using an event that is detailed in

https://docs.aws.amazon.com/lambda/latest/dg/lambda-invocation.html

Getting ready
To complete this recipe, you will need the following:

• Amazon Redshift provisioned cluster deployed in the AWS Region eu-west-1. Note the

data warehouse ID; we will refer to it as [Your-Redshift_Cluster].

• Amazon Redshift data warehouse master user credentials. Note the username; we will

refer to it as [Your-Redshift_User].

https://docs.aws.amazon.com/lambda/latest/dg/lambda-invocation.html

Chapter 5 161

• Access to any SQL interface, such as a SQL client or Amazon Redshift QEV2.

• IAM user with access to Amazon Redshift, Amazon S3, and AWS Lambda.

• Amazon S3 bucket created in eu-west-1; we will refer to it as [Your-Amazon_S3_Bucket].

• AWS account number; we will reference it in recipes as [Your-AWS_Account_Id].

How to do it…
In this recipe, we will use Python-based AWS Lambda to copy data into Amazon Redshift as soon

as the file arrives at the Amazon S3 location. Follow these steps:

1. The AWS Lambda package is available at https://github.com/PacktPublishing/Amazon-

Redshift-Cookbook-2E/blob/main/Chapter05/src/my-lambda-deployment-package.

zip. Download this deployment package to your local folder.

2. Navigate to the AWS console, select the Lambda service, and click on Create function,

as follows:

Figure 5.16: Creating an AWS Lambda function using the AWS console

https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter05/src/my-lambda-deployment-package.zip
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter05/src/my-lambda-deployment-package.zip
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter05/src/my-lambda-deployment-package.zip

Scalable Data Orchestration for Automation162

3. In the Create function section, enter lambda_function under Function name, choose

Python 3�13 for Runtime, and click on Create function:

Figure 5.17: Creating the lambda_function function

4. In the Code source section, choose to upload from .zip file. Select the my-lambda-
deployment-package.zip from your local folder and click on Save. Now, the Lambda code

and Python package will be successfully imported.

5. Click on lambda_function.py and edit the values for the following parameters to point

to your Amazon Redshift data warehouse:

 db_database = "[database]"

 db_user = "[user]"

 db_password = "[password]"

 db_port = "[port]"

 db_host = "[host]"

 iam_role = "'arn:aws:iam::[Your-AWS_Account_Id]:role/[Your-

Redshift-Role]"

6. Click on Deploy to save the changes.

7. You can now test lambda_function by clicking on the Test option. In the Test option,

choose Create new test event. In the Event template, choose hello-world, and for the

event name, enter myevent, and copy and paste the following test stub event value:

{

 "Records": [

 {

 "eventVersion": "2.1",

Chapter 5 163

 "eventTime": "2030-12-06T18:43:42.795Z",

 "s3": {

 "s3SchemaVersion": "1.0",

 "configurationId": "test",

 "bucket": {

 "name": "packt-redshift-cookbook"

 },

 "object": {

 "key": "part/000.gz",

 "size": 540

 }

 }

 }

]

}

8. Now, let’s create an Amazon S3-triggered event so that files can be automatically copied
into Amazon Redshift as they get put into your S3 location. Navigate to the Amazon S3

service in the AWS console and click on the [Your-Amazon_S3_Bucket] bucket. Select

Properties, then click on Event notifications, as follows:

Figure 5.18: Creating event notifications from Amazon S3

 Note

This test event will output the bucket name and key. It will also perform a

COPY operation in Amazon Redshift to create the stg_part table and ingest

data from s3://packt-redshift-cookbook/part/000.gz.

Scalable Data Orchestration for Automation164

9. For Create event notification, set up the event details as follows:

Figure 5.19: Configuring the event notification

• Event name: Any event name of your choice

• Prefix: Your S3 folder location where you plan to put the files to be copied, for
example, events/

• Suffix: .csv

• Event types: Check Put

• Destination: Lambda Function

• Specify Lambda function: Choose lambda_function from the list

10. Now, click on Save changes.

11. Download the s3://packt-redshift-cookbook/part/000.gz and s3://packt-redshift-

cookbook/part/000.gz public S3 files to your location folder.

12. Navigate to your Amazon S3 bucket, [Your-Amazon_S3_Bucket], and upload 000.gz from

your local folder, followed by 001.gz.

13. From the AWS console, navigate to Lambda and select the lambda_function function.

Click on Monitoring and you will notice that there are two invocations of Lambda that

copied the uploaded files automatically to Amazon Redshift.

Chapter 5 165

To verify the execution of lambda_function, click on View logs in CloudWatch, which shows

the execution logs.

How it works…
The AWS Lambda deployment package bundles the Python function code and the dependent

psycog2 library (https://www.psycopg.org/), which is used to connect to Amazon Redshift.

You can include any other dependent packages that you may need to meet your organizational

requirements when creating this deployment package.

Also, as a best practice, you can enhance the lamda_function code to retrieve the Amazon Redshift

credentials using AWS Secret manager, as illustrated in https://docs.aws.amazon.com/code-

samples/latest/catalog/python-secretsmanager-secrets_manager.py.html.

See also...
• There are several ways to invoke an AWS Lambda function using an event. These are de-

tailed at https://docs.aws.amazon.com/lambda/latest/dg/lambda-invocation.html.

• You can build this deployment package from scratch using the instructions at https://

docs.aws.amazon.com/lambda/latest/dg/python-package.html and https://pypi.

org/project/aws-psycopg2/.

Orchestration using AWS Step Functions on
provisioned clusters
AWS Step Functions allow you to author a workflow where each step is decoupled, but the ap-

plication state can be maintained. AWS Step Functions is integrated with multiple AWS services

that allow flexibility to call the specific service in each of the tasks.

AWS Step Functions supports the Amazon States Language, which allows the workflow to be
authored and maintained like a JSON file. You can harness AWS Step Functions to execute any
complex ETL workflow in Amazon Redshift. AWS Step Functions also integrates with Amazon
Redshift serverless.

In this recipe, we will use AWS Step Functions to orchestrate a simple ETL workflow that will
submit queries to Amazon Redshift asynchronously using the Amazon Redshift Data API. We

will start with creating an AWS Lambda function that will be used to submit and status poll for

the queries.

https://www.psycopg.org/
https://docs.aws.amazon.com/code-samples/latest/catalog/python-secretsmanager-secrets_manager.py.html
https://docs.aws.amazon.com/code-samples/latest/catalog/python-secretsmanager-secrets_manager.py.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-invocation.html
https://docs.aws.amazon.com/lambda/latest/dg/python-package.html
https://docs.aws.amazon.com/lambda/latest/dg/python-package.html
https://pypi.org/project/aws-psycopg2/
https://pypi.org/project/aws-psycopg2/

Scalable Data Orchestration for Automation166

Getting ready
To complete this recipe, you will need the following:

• Amazon Redshift provisioned cluster deployed in the AWS Region eu-west-1. Note the

data warehouse ID; we will refer to it as [Your-Redshift_Cluster].

• Amazon Redshift data warehouse master user credentials. Note the username; we will

refer to it as [Your-Redshift_User].

• Access to any SQL interface such as a SQL client or Amazon Redshift QEV2.

• IAM user with access to Amazon Redshift and AWS Lambda.

How to do it…
1. Navigate to the AWS console, select the AWS Lambda service, and click on Create func-

tion, as follows:

Figure 5.20: Creating an AWS Lambda function using the AWS console

2. In the Create function section, enter submit_redshift_query under Function name,

choose Python 3�6 for Runtime, and click on Create function.

3. In the function code for lambda_function.py, copy and paste the code from https://

github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter05/

src/stepfunction/lambda_submit_redshift_query.py and click on Deploy, which will

save the function.

https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter05/src/stepfunction/lambda_submit_redshift_query.py
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter05/src/stepfunction/lambda_submit_redshift_query.py
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter05/src/stepfunction/lambda_submit_redshift_query.py

Chapter 5 167

4. In the Permissions tab of the AWS Lambda function, click on the auto-created Role name

value (submit_redshift_query-role-***), as follows:

Figure 5.21: Configuring the permissions for the AWS Lambda

5. In Identity and Access Management (IAM), which opens in a different tab, copy and

paste the following policy by clicking on Add inline policy, which is available at https://

github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter05/

src/stepfunction/lambda_execute_policy.json.

6. Click on Test, select Configure events, choose Create new test event, and set the event

template as hello-world:

Figure 5.22: Setting up the test event for AWS Lambda

https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter05/src/stepfunction/lambda_execute_policy.json
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter05/src/stepfunction/lambda_execute_policy.json
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter05/src/stepfunction/lambda_execute_policy.json

Scalable Data Orchestration for Automation168

7. In the event textbox, copy the following sample input, replacing [Your-Redshift_

Cluster], [Your-Redshift_DB], and [Your-Redshift_User] with your Amazon Redshift

data warehouse, and press the Create button:

{

 "input": {

 "redshift_data warehouse_id": "[Your-Redshift_Data warehouse]",

 "redshift_database": "[Your-Redshift_DB]",

 "redshift_user": "[Your-Redshift_User]",

 "sql_text": "select sysdate"

 }

}

8. Press the Test button and you should be able to see that the sample query was submitted

in the execution results, as follows, for successful submission:

START RequestId: 43df694d-3716-474f-b279-cd7b976ef05c Version:

$LATEST

{'input': {'redshift_data warehouse_id': 'demodata warehouse-

71f3476d',

 'redshift_database': 'dev',

 'redshift_user': 'demo',

 'sql_text': 'select sysdate'}}

{'Data warehouseIdentifier': 'demodata warehouse-71f3476d',

'CreatedAt': datetime.datetime(2020, 12, 9, 0, 47, 2, 353000,

tzinfo=tzlocal()),

'Database': 'dev',

'DbUser': 'demo',

'Id': '0ce38431-be55-4c4b-97c8-230624a01c76', 'ResponseMetadata':

{'RequestId': 'dbabb5dc-8de8-4f59-80f9-367319eeaecb',

 'HTTPStatusCode': 200,

Chapter 5 169

 'HTTPHeaders': {'x-amzn-requestid': 'dbabb5dc-8de8-4f59-80f9-

367319eeaecb',

 'content-type': 'application/x-amz-json-1.1', 'content-

length': '150',

 'date': 'Wed, 09 Dec 2020 00:47:02 GMT'}, 'RetryAttempts':

0}}

END RequestId: 43df694d-3716-474f-b279-cd7b976ef05c

9. Repeat steps 1–8 to create another AWS Lambda function named poll_redshift_query

using the following code:

• AWS Lambda code: https://github.com/PacktPublishing/Amazon-Redshift-

Cookbook-2E/blob/main/Chapter05/src/stepfunction/lambda_poll_

redshift_query.py

• AWS Lambda test event: https://github.com/PacktPublishing/Amazon-

Redshift-Cookbook-2E/blob/main/Chapter05/src/stepfunction/lambda_

poll_redshift_query_test.json

10. Let’s now start creating the AWS Step Functions function to orchestrate a simple work-

flow to submit and monitor the job using the AWS Lambda functions we have created.

Navigate to the AWS console and select the Step Functions service. Click on Create state

machine, as follows:

Figure 5.23: Creating a Step Functions state machine

https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter05/src/stepfunction/lambda_poll_redshift_query.py
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter05/src/stepfunction/lambda_poll_redshift_query.py
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter05/src/stepfunction/lambda_poll_redshift_query.py
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter05/src/stepfunction/lambda_poll_redshift_query_test.json
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter05/src/stepfunction/lambda_poll_redshift_query_test.json
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter05/src/stepfunction/lambda_poll_redshift_query_test.json

Scalable Data Orchestration for Automation170

11. Select Generate code snippet and Standard to copy and paste the following code (which

is available at https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/

blob/main/Chapter05/src/stepfunction/stepfunction_job_redshift.json) in the

Definition section and click Next:

Figure 5.24: Setting up the Step Functions workflow definition

12. Under the Permissions tab, click on Create new role and click Next to create the AWS

Step Functions state machine.

13. Click on Start execution and, under the input, provide the following details, which are

also available at https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-

2E/blob/main/Chapter05/src/stepfunction/stepfunction_job_redshift_test.json:

{

 "input": {

 "redshift_data warehouse_id": "[Your-Redshift_Data warehouse]",

 "redshift_database": "[Your-Redshift_DB]",

 "redshift_user": "[Your-Redshift_User]",

 "sql_text": "select sysdate"

 },

 "wait_time": "3"

}

https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter05/src/stepfunction/stepfunction_job_redshift.json
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter05/src/stepfunction/stepfunction_job_redshift.json
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter05/src/stepfunction/stepfunction_job_redshift_test.json
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter05/src/stepfunction/stepfunction_job_redshift_test.json

Chapter 5 171

14. Now, you can monitor the execution of this workflow under the Details tab, as follows:

Figure 5.25: Monitoring the event function workflow

How it works…
AWS Step Functions uses the Amazon States Language, which is JSON-based. You can author most

kinds of ETL process and drive a workflow that can wait for dependency between each task and
also allow for parallelism when needed. The AWS state machine can be triggered either through

an event or scheduled for automation.

Scalable Data Orchestration for Automation172

See also...
• You can see the list of natively supported integrations here: https://docs.aws.amazon.

com/step-functions/latest/dg/concepts-service-integrations.html.

• For more information on the Amazon States Language, go to https://docs.aws.amazon.

com/step-functions/latest/dg/concepts-amazon-states-language.html.

Orchestration using Amazon Managed Workflows for
Apache Airflow on provisioned clusters
Amazon Managed Workflows for Apache Airflow (MWAA) brings automation to life by manag-

ing complex data pipelines from beginning to end. At its core, it handles Apache Airflow, which
creates, schedules, and monitors your workflows with precision. Each data pipeline breaks down
into smaller, interconnected tasks that work together seamlessly in a coordinated flow.

Using Python, developers craft these workflows as Directed Acyclic Graphs (DAGs), defining the
exact path and sequence for data processing. The system grows and adapts through powerful

plugins, while a user interface provides clear visibility into every workflow’s status and progress.
Working hand in hand with Amazon Redshift serverless, it creates a complete ecosystem for data

processing, all while Amazon manages the underlying infrastructure.

In this recipe, we will build the underlying infrastructure used for Apache Airflow using Amazon
MWAA. After the infrastructure is built, we will build a data pipeline for the part table.

Getting ready
To complete this recipe, you will need the following:

• Amazon Redshift provisioned cluster deployed in the AWS Region eu-west-1. Note the

cluster ID; we will refer to it as [Your-Redshift_Cluster].

• Amazon Redshift data warehouse master user credentials. Note the username; we will

refer to it as [Your-Redshift_User].

• Access to any SQL interface, such as a SQL client or Amazon Redshift Query Editor.

• IAM user with access to Amazon Redshift and Amazon MWAA. Version 2.10.1

• Amazon S3 bucket created in eu-west--1; we will refer to it as [Your-Amazon_S3_Bucket].

https://docs.aws.amazon.com/step-functions/latest/dg/concepts-service-integrations.html
https://docs.aws.amazon.com/step-functions/latest/dg/concepts-service-integrations.html
https://docs.aws.amazon.com/step-functions/latest/dg/concepts-amazon-states-language.html
https://docs.aws.amazon.com/step-functions/latest/dg/concepts-amazon-states-language.html

Chapter 5 173

How to do it…
In this recipe, we will set up a data pipeline using Apache Airflow that will connect to Amazon
Redshift to orchestrate a workflow:

1. Browse to the Amazon S3 console and select [Your-Amazon_S3_Bucket]. Create a folder

called airflow within the bucket. We will use this folder to store the Airflow DAGs and
requirements file providing the list of dependencies needed to run the Python DAG.

2. You can use the CLI or the S3 console to upload the files. Upload the requirements file
(https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/

Chapter05/src/requirements.txt) to the bucket location at s3://[Your-Amazon_S3_

Bucket]/airflow.

3. Download the DAG script from https://github.com/PacktPublishing/Amazon-

Redshift-Cookbook-2E/blob/main/Chapter05/src/redshift_parts_airflow_dag.py.

For load_sql, replace the name of the s3 bucket <Your-Amazon_S3_Bucket > and iam

role <your-Redshift-role> in the script. Save it and upload the workflow Python script
(DAG) to the newly created dags folder in your airflow bucket.

Figure 5.26: Setting up an Apache Airflow DAG

4. We are now ready to build the infrastructure and setup needed for Apache Airflow. Nav-

igate to the AWS console in the AWS Region eu-west-1 and select Managed Workflows
for Apache Airflow (MWAA). Choose Create environment.

5. Name the environment MyAirflowEnvironment.

6. Choose the latest Airflow version.

7. For S3 Bucket, specify the s3://[Your-Amazon_S3_Bucket bucket. The bucket needs to

be in the same Region in which you are creating MWAA.

8. For DAGs folder, enter s3://[Your-Amazon_S3_Bucket]/airflow/dags

https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter05/src/requirements.txt
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter05/src/requirements.txt
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter05/src/redshift_parts_airflow_dag.py
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter05/src/redshift_parts_airflow_dag.py

Scalable Data Orchestration for Automation174

9. For Requirements file, enter s3://[Your-Amazon_S3_Bucket]/airflow/requirements.

txt

Figure 5.27: Configuring the source Amazon S3 bucket

10. Choose Next. If you have an existing VPC, choose it from the dropdown; if you do not have

an existing VPC, choose Create MWAA VPC. This will launch a CloudFormation template,

create the stack, and, on completion, navigate back to the MWAA setup step.

11. From the dropdown, select the VPC and the subnets. Set the web server access as Public

network:

Figure 5.28: Setting up the network access to connect to Amazon Redshift

Chapter 5 175

12. Select the mw1�small instance type. For the rest, keep the defaults for an IAM role.

Figure 5.29: Configuring the Amazon EC2 instance for Airflow

13. Choose Create environment. On completion of the setup, it will make the environment

available with Apache Airflow. We are now ready to execute the workflow.

14. Select Open Airflow UI from the environment.

Figure 5.30: Setting up the Airflow environment

15. From the UI, click on Admin and choose Connections. We will configure the connection
for the Amazon Redshift data warehouse, which will be used in the workflow tasks.

Figure 5.31: Setting up the Amazon Redshift connection

Scalable Data Orchestration for Automation176

16. Navigate to the conn_id Postgres connection and choose Edit.

17. Specify your Redshift data warehouse endpoint, username, password, and port number.

Click on Save.

Figure 5.32: Configuring the Amazon Redshift connection properties

18. Now that the setup is complete, from the UI, click on DAGs. This will list the parts-

redshift-datapipeline-dag DAG that you uploaded to the S3 bucket.

Figure 5.33: Configuring the Airflow DAG

19. Let’s check the DAG. Click on the DAG name. This workflow has three tasks: the first will
create the part_stg table using PostgresOperator. The second will use the copy command

to load the parts sample data from S3. In the final step, it will check the record count in
the part_stg table using PythonOperator.

Chapter 5 177

Figure 5.34: Verifying the DAG setup on Airflow

20. Click on DAGs in the UI and toggle the DAG to the On state – this will put the DAG in the

schedule.

Figure 5.35: Scheduling the workflow execution

21. This will start the execution. Click on the green number under DAG Runs.

22. The workflow will execute as per the set dependency. It will run redshift_parts_stg_
create first and, on it’s completion, run the second task. When redshift_parts_stg_load

has completed successfully, it will execute redshift_parts_stg_recordcount. This is

the monitoring step.

Figure 5.36: Verifying the execution of the workflow

Scalable Data Orchestration for Automation178

23. Let’s validate the logs for the copy and record count step. Click on redshift_parts_stg_load.

Then, select Logs.

Figure 5.37: Viewing the task execution details

24. Capture the log_url value and open a new browser window and paste the URL. The

copy task completed successfully; this is logged in the logs and you can verify how many

records got loaded.

Figure 5.38: Verifying the task execution detailed logs

Chapter 5 179

25. Similarly, capture the log for the final task and verify the log as a data quality check. This
record count of the part_stg table is 20000000 records.

Figure 5.39: Verifying the task execution for the part_stg table

How it works…
Amazon MWAA simplifies the setup needed to build and orchestrate a data pipeline using Apache

Airflow. Apache Airflow provides the means to build reusable data pipelines programmatically.

6
Platform Authorization and
Security

Amazon Redshift provides out-of-the-box features that enable you to build the data warehouse

to meet the requirements of the most security-sensitive organizations. In AWS, security is the

highest priority and is a shared responsibility (https://aws.amazon.com/compliance/shared-

responsibility-model/) between AWS and you. Using Amazon Redshift managed service, the

data center and network architecture come out of the box to meet the security-sensitive organi-

zations. You can now configure the data and cluster management controls to meet your organi-
zation’s requirements. Data can be encrypted to keep your data secure in transit and at rest using

industry-standard encryption techniques. Amazon Redshift resources are controlled in the four

different levels of cluster management (creating and configuring the cluster), cluster connectivity,
database access to objects, and temporary/single sign-on.

Specifically, the following topics are covered in this chapter:

• Managing infrastructure security

• Data encryption at rest

• Data encryption in transit

• Managing superusers using an Amazon Redshift provisioned cluster

• Using IAM authentication to generate database user credentials for an Amazon Redshift

serverless cluster

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/shared-responsibility-model/

Platform Authorization and Security182

• Managing audit logs

• Monitoring Amazon Redshift

• Single sign-on using AWS IAM Identity Center

• Metadata security

Technical requirements
Here are the technical requirements to complete the recipes in this chapter:

• Access to the AWS Console.

• An AWS administrator should create an IAM user by following Recipe 1 in the Appendix.

This IAM user will be used in some of the recipes in this chapter.

• The AWS administrator should also create an IAM role by following Recipe 3 in the Ap-

pendix. This IAM role will be used in some of the recipes in this chapter.

• The AWS administrator should also deploy the AWS CloudFormation template (https://

github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter06/

chapter_6_CFN.yaml) to create the following two IAM policies:

• An IAM policy attached to the IAM user that will give them access to Amazon

Redshift, Amazon S3, AWS Secrets Manager, Amazon CloudWatch, Amazon Cloud-

Watch Logs, Amazon EC2, Amazon SNS, AWS IAM, AWS KMS, AWS Glue, and

Amazon VPC.

• An IAM policy attached to the IAM role that will allow Amazon Redshift data

warehouse to access Amazon S3 and AWS IAM Identity Center.

• Attach an IAM role to the Amazon Redshift data warehouse (provisioned or serverless)

by following Recipe 4 in the Appendix. Make a note of the IAM role name; we will use it

in the recipes as [Your-Redshift_Role].

• Amazon Redshift data warehouse deployed in the eu-west-1 AWS region.

• Amazon Redshift data warehouse master user credentials.

• Access to any SQL interface, such as a SQL client or the Amazon Redshift query editor.

• AWS account number; we will use it in the recipes as [Your-AWS_Account_Id].

• Amazon S3 bucket created in eu-west-1; we will use it as [Your-Amazon_S3_Bucket].

• Code files in the GitHub repo: https://github.com/PacktPublishing/Amazon-Redshift-
Cookbook-2E/tree/main/Chapter06.

https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter06/chapter_6_CFN.yaml
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter06/chapter_6_CFN.yaml
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter06/chapter_6_CFN.yaml
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/tree/main/Chapter06
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/tree/main/Chapter06

Chapter 6 183

Managing infrastructure security
Amazon Virtual Private Cloud (Amazon VPC) allows you to launch an Amazon Redshift data

warehouse in a logically isolated virtual network where you define the IP address range and
subnets and configure the infrastructure security. When you provision an Amazon Redshift data
warehouse, it is locked down by default, so nobody has access to it. To grant inbound access to

an Amazon Redshift data warehouse, you associate the cluster with the security group. Making

your Amazon Redshift data warehouse follow the least access security principle is a best practice.

Getting ready
To complete this recipe, you will need the following setup:

• An IAM user with access to Amazon VPC, Amazon EC2, and Amazon Redshift

• Access to any SQL interface, such as a SQL client or the Amazon Redshift query editor

How to do it…
In this recipe, you will launch an Amazon Redshift Provisioned cluster inside a custom VPC and

subnet using the following steps:

1. Navigate to the AWS Console and select the VPC service. Click on Launch VPC Wizard

and choose the default VPC with a Single Public Subnet option. Enter the following values

and click on the Create VPC button:

• IPv6 CIDR block - Amazon provided IPv6 CIDR block

• VPC name – vpc-redshift

• Subnet name - subnet-redshift

• Service endpoints - com.amazonaws.eu-west-1.s3

Platform Authorization and Security184

Choosing the service endpoints from Amazon S3 allows the traffic to and from Amazon
Redshift to be within the VPC rather than the default of via the internet.

Figure 6.1 – Creating the VPC and subnet for Amazon Redshift

Chapter 6 185

2. Navigate to Your VPCs in the left-hand menu and note the VPC ID associated with vpc-

redshift. Click on Security Group in the left menu and click on the security group asso-

ciated with the VPC ID. Click on Inbound Rules, remove the default rules selection, and

choose My IP, as shown in the following screenshot:

Figure 6.2 – Editing the inbound rules for the security group

In the list of Inbound Rules, instead of individual IP addresses, configuring the CIDR IP
ranges allows flexibility for allowing connections within your organization.

Note

You can learn more about setting up VPC by using this guide: https://

docs.aws.amazon.com/vpc/latest/userguide/working-with-vpcs.

html#add-ipv4-cidr.

https://docs.aws.amazon.com/vpc/latest/userguide/working-with-vpcs.html#add-ipv4-cidr
https://docs.aws.amazon.com/vpc/latest/userguide/working-with-vpcs.html#add-ipv4-cidr
https://docs.aws.amazon.com/vpc/latest/userguide/working-with-vpcs.html#add-ipv4-cidr

Platform Authorization and Security186

3. Navigate to the AWS Amazon Redshift console, click on the Config menu, and choose

subnet groups. Click on Create subnet group, choose vpc-redshift, add all the subnets

in this VPC, provide a friendly description, and click on Create cluster subnet group, as

shown in the following screenshot:

Figure 6.3 - Creating a subnet group for Amazon Redshift

Chapter 6 187

4. Click on the cluster menu and navigate to Amazon Redshift > Clusters > Create cluster.

Navigate to the Additional Configurations section and toggle off the Use default option.

Choose vpc-redshift in the VPC, as shown in the following screenshot, and click on

Create cluster:

Figure 6.4 – Configuring the network and security when creating the Amazon Redshift

provisioned cluster

5. Connect to the SQL client using the masteruser credentials to verify the connection. Re-

fer to the Connecting to Amazon Redshift using SQLWorkbench/J client section in Chapter 1,

Getting Started with Amazon Redshift, for step-by-step instructions.

Platform Authorization and Security188

Data encryption at rest
Amazon Redshift by default provides the option to encrypt the cluster at rest using the AES al-

gorithm with a 256-bit key. Key management can be performed by AWS KMS or your hardware

security module. When an Amazon Redshift data warehouse is encrypted at rest, it provides

block-level encryption. When the data warehouse is encrypted the metadata, snapshots, and

recovery points are also encrypted. This enables you to meet your security requirements to comply

with PCI, SOX, HIPAA, or GDPR, depending on your needs. Amazon Redshift serverless clusters

on creation require encryption using a default or customer-managed key.

Amazon Redshift uses envelope encryption using a robust four-tier hierarchy of encryption keys:

master key, cluster encryption key, database encryption key, and data encryption key.

Figure 6.5 – Amazon Redshift encryption

Getting ready
To complete this recipe, you will need the following setup:

• An IAM user with access to Amazon KMS and Amazon Redshift

• Reference for encryption at rest in the AWS documentation: https://docs.aws.amazon.

com/redshift/latest/mgmt/working-with-db-encryption.html

• Reference for the AWS CLI for Redshift: https://docs.aws.amazon.com/cli/latest/

reference/redshift/index.html

• Reference for the Amazon Redshift API: https://docs.aws.amazon.com/redshift/

latest/APIReference/Welcome.html

How to do it…
In this recipe, we will see how to encrypt a new and an existing Amazon Redshift Provisioned

cluster:

Let’s see how to turn on encryption while creating an Amazon Redshift provisioned cluster.

https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-db-encryption.html
https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-db-encryption.html
https://docs.aws.amazon.com/cli/latest/reference/redshift/index.html
https://docs.aws.amazon.com/cli/latest/reference/redshift/index.html
https://docs.aws.amazon.com/redshift/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/redshift/latest/APIReference/Welcome.html

Chapter 6 189

Navigate to the Amazon Redshift console and choose Create cluster. Scroll to Additional con-

figurations and toggle the defaults. This will allow you to expand Database configurations. You

have two options to choose from: an AWS managed key or a customer-managed key. When you

choose an AWS managed key, you have the option to use the default Redshift key or use a key

from an existing AWS account.

Figure 6.6 – Enabling AWS KMS encryption in Amazon Redshift

You can also create a cluster with encryption using the AWS CLI or an Amazon Redshift API call.

Let’s see how to turn on encryption for an existing Amazon Redshift provisioned cluster:

1. Navigate to the Amazon Redshift console. Choose your provisioned cluster. Choose prop-

erties and select Edit encryption:

Figure 6.7 – Modifying encryption for an existing Amazon Redshift Provisioned cluster

Platform Authorization and Security190

The AWS CLI and the Amazon Redshift API support conversion to a KMS encrypted cluster.

2. Using the Amazon Redshift console, navigate to the existing Amazon Redshift cluster.

Choose Action and select rotate encryption. You will see the following dialog box:

Figure 6.8 – Rotating encryption

You will see the following dialog box. Amazon Redshift will rotate the CEK for the clus-

ter and the snapshot. The data encryption key for the cluster will change, but the data

encryption key (DEK) cannot be changed for the snapshots that are on S3. During key

rotation, the cluster is put in the ROTATING_KEY state until Amazon Redshift decrypts and

re-encrypts the data. You can set the frequency of rotation to meet your organizational

needs. You can balance the plan of rotating the keys with the availability considerations

for your cluster.

Figure 6.9 – Amazon Redshift rotating the AWS KMS keys

You can rotate the encryption keys using the AWS CLI and the Amazon Redshift API.

Chapter 6 191

Data encryption in transit
With Amazon Redshift, you can encrypt your data in transit. Enabling the Secure Sockets Layer

(SSL) allows SQL clients to encrypt data in transit using certificates. In addition, the AWS CLI,
SDK, or API client can communicate using HTTS endpoints. For communication between AWS

services such as Amazon S3 and DynamoDB, Amazon Redshift uses hardware-accelerated SSL.

Getting ready
To complete this recipe, you will need:

• IAM user with access to Amazon Redshift.

• Download the JDBC driver from https://docs.aws.amazon.com/redshift/latest/mgmt/

configure-jdbc-connection.html.

• A SQL client using a JDBC or ODBC connection. This recipe uses SQL workbench/j: http://

www.sql-workbench.net/.

• Create a new parameter group for your Amazon Redshift Provisioned cluster: https://

docs.aws.amazon.com/redshift/latest/mgmt/managing-parameter-groups-console.

html.

How to do it...
In this recipe, we will enable SSL connectivity in Amazon Redshift and the SQL Workbench client:

1. To configure your Amazon Redshift provisioned cluster to require an SSL connection,
navigate to the Amazon Redshift console. Choose your Amazon Redshift cluster and se-

lect the Properties tab. Scroll to database configuration and select the parameter group:

Figure 6.10 – Pick the parameter group associated with your Amazon Redshift cluster

https://docs.aws.amazon.com/redshift/latest/mgmt/configure-jdbc-connection.html
https://docs.aws.amazon.com/redshift/latest/mgmt/configure-jdbc-connection.html
http://www.sql-workbench.net/
http://www.sql-workbench.net/
https://docs.aws.amazon.com/redshift/latest/mgmt/managing-parameter-groups-console.html
https://docs.aws.amazon.com/redshift/latest/mgmt/managing-parameter-groups-console.html
https://docs.aws.amazon.com/redshift/latest/mgmt/managing-parameter-groups-console.html

Platform Authorization and Security192

2. Click on the parameter group, which will bring you to the workload management con-

figuration page.

3. Set require_ssl to true. Choose Save. Navigate to the Redshift cluster. When the cluster

is in the pending-reboot state, reboot the cluster by selecting reboot under action.

Figure 6.11 – Enabling the require_sql parameter in the parameter group

4. When require_ssl is set to true, Amazon Redshift accepts connections that are TLS en-

crypted. When sslMode is set to verify-ca, then the server is verified by checking the
certificate chain up to the root certificate bundled with the Amazon Redshift JDBC/ODBC
driver. When sslMode is set to verify-full, the server hostname provided in the con-

nection will be checked against the name stored in the server certificate. If hostname
matches the names stored in the server certificate, the connection is successful, otherwise
it will be rejected.

Chapter 6 193

5. Connect to Amazon Redshift Provisioned cluster using your SQLclient. This recipe is using

SQLWorkbench/j. Get the cluster connection JDBC URL from the cluster’s connection

details on the properties tab. We are using sslMode=verify-full.

Figure 6.12 – Connecting to Amazon Redshift using SQL Workbench and SSL

6. Let’s check whether the connection is using sslMode. Run the following code:

select * from stl_connection_log

order by recordtime desc

limit 2;

Here is the output of the preceding code:

Figure 6.13 – Verifying the SSL connection using the STL_CONNECTION_LOG

We have now successfully connected to Amazon Redshift using a TLS-encrypted connection.

Note

For an Amazon Redshift serverless cluster to configure SSL, you can modify your
workgroup using require_ssl. This will restart your workgroup to take effect:

aws redshift-serverless update-workgroup --workgroup-name

yourWorkgroupName --config-parameters parameterKey=require_

ssl,parameterValue=true

Platform Authorization and Security194

Managing superusers using an Amazon Redshift
provisioned cluster
A superuser allows you to get complete access to Amazon Redshift, independently of all permis-

sion checks; this is used for administrative tasks. For example, you can create other users, execute

diagnostic queries on system tables, and take action as needed. Superuser access has to be granted

sparingly; do not use this for day-to-day work.

masteruser is a special type of superuser that you set up when launching the cluster.

Getting ready
To complete this recipe, you will need the following setup:

• An IAM user with access to Amazon Redshift

• An Amazon Redshift provisioned cluster deployed in the eu-west-1 AWS region

• Amazon Redshift provisioned cluster master user credentials

• Access to any SQL interface, such as a SQL client or the Amazon Redshift query editor V2

How to do it…
This recipe will illustrate how to create a superuser, use it to list all the active SQL statements,

and terminate a particular statement:

1. Connect to Amazon Redshift using the SQL client using the masteruser credentials and

execute the following statement to create another superuser, replacing [masteruser_

password] with the password of your choice:

create user myadmin createuser password '[masteruser_password]';

2. If you have forgotten the masteruser credentials, you can navigate to the Amazon Redshift

AWS Console, click on your cluster-id (Amazon Redshift -> Clusters -> YOUR_CLUS-

TER), click on Actions, and click on Change master user password to reset it.

3. Now, use the myadmin superuser to reconnect to Amazon Redshift using the SQL Work-

bench/J client. Execute the following statement to see a list of all the Running SQL state-

ments:

SELECT pid,

 TRIM(user_name),

 starttime,

 duration,

Chapter 6 195

 SUBSTRING(query,1,50) AS stmt

FROM stv_recents

WHERE status = 'Running';

Here is the expected output:

pid btrim starttime duration stmt

18764 user_a 2021-03-28 18:39:49 3000 select part_id,

seller_id

18790 user_b 2021-03-28 18:39:49 60 Insert into parts(

Queries from user_a are taking over 3,000 seconds to execute and probably consume

resources (this can be confirmed using the AWS Console), and we assume you would like
to terminate this query.

4. Execute the following statement to terminate the query with pid = 18764:

set query_group to 'superuser';

cancel 18764;

5. Using the optional query_group to 'superuser' allows access to a special superuser queue,

which makes the query execute immediately.

See also…
To learn more about WLM queue assignment rules please refer to (https://docs.aws.amazon.

com/redshift/latest/dg/cm-c-wlm-queue-assignment-rules.html).

Using IAM authentication to generate database user
credentials for Amazon Redshift serverless clusters
Amazon Redshift allows us to programmatically generate temporary database user credentials

that can be used for automated scripts to connect to the cluster. Using the get-credentials

command in the AWS CLI and GetCredentials in the API, you can generate temporary credentials

that can then be used in JDBC and ODBC.

https://docs.aws.amazon.com/redshift/latest/dg/cm-c-wlm-queue-assignment-rules.html
https://docs.aws.amazon.com/redshift/latest/dg/cm-c-wlm-queue-assignment-rules.html

Platform Authorization and Security196

Getting ready
To complete this recipe, you will need the following setup:

• An IAM user with access to Amazon Redshift and AWS IAM.

• An Amazon Redshift serverless cluster deployed in the eu-west-1 AWS region. We will use

the cluster ID as [Your-Redshift_Cluster].

• Amazon Redshift serverless cluster master user credentials.

• Access to any SQL interface, such as a SQL client or the Amazon Redshift query editor V2.

• AWS CLI on your local client.

How to do it...
In this recipe, we will generate temporary credentials to connect to an Amazon Redshift provi-

sioned cluster:

1. Open the Command line interface (CLI) tool on your local client where AWS CLI is con-

figured. Type the following command to verify that the AWS CLI has been installed. This
should show the help manual:

aws help

2. Execute the following command to generate temporary credentials for your Amazon

Redshift serverless cluster. Remember to replace [Your-Redshift_Cluster] and [Your-

Redshift_DB] with the respective values:

aws redshift-serverless get-credentials --workgroup cookbook --db-

name dev

3. The preceding CLI command returns dbuser and dbpassword. This can be used to log in

to Redshift. Credentials generated using the CLI are temporary:

{

 "dbPassword": "ENnq6ge8KlZsGSWMTIM8Ko7/Z13IrJvLJQC5t1jX7xNxxLvtm

j+dEiLzcQcurIjzPqFPjk6h/e6SbwVJ+2y9wDswyqzEgLrMdkS/EHX3kY+hruUPvzn6L

0hqn3Xf8vLVdAoJ0AMlsaRJ+j9fqQOvvgzmFsWxqN77uHs2wtfYE+9Xan9J+KLMtfDAOv

63wTAMeGZiqcfM09bovSyWKFrsB2DFzbuhN/EWKL3+6njlq6LPZILKAxvKGhMUVktNX

jyPBETUUMUp604K/UTC9yvpb0J8nccdk3d4Tk4pOPafDFkkVcNqdoD90cv+9s46utk4

TQVhJ8JASsIkfLUlnNjjW7iAtzxGGHXJpJ1V7ENysTjD9grc7WX83KOPjiglrCyh+vit

9FwV9rpGUr7bNuqPYbWKVCPUdE1+nCqFveIqrfTcWsoxsGQWMKI407E1Q4JcA6TSsTxt

EUs8nShtpi947EmQuie+1swuUNroU7A4PCEDIry+831Brte3zHf/p8WCngWZDrxphjF

1N10VWp6V9yoQFhmidaXu5Rzdy1ka8OKvsMIaQ27S9csA3kntItwKZL7R8R/LEjcSFl

Chapter 6 197

YQ4dBl4w0tjgxHpBkSYfK+QMKQ1//

y6fUlm0i5e504aVH0F/y0Wl2DvRKzXc4PE0zRTOiZHr2p/

FXCufWen3LFC0w0RFY4byWsgZXQwdD7nTefRowukr8qrmOo8oQYaG

xd9/0lf5vkf242x1vo1hAjymvAC2mAdpactPPSQqnwjWjt1Y49O0qPOzAu3jYe561tJw/

ZacOGcJQqsmICesK5jWYtMMqzIsnfChO3zAxBYA7V5r/21H3x2rycihX3woj9XK4LjKwP

Fhzc8LbHsuxz0qtBhsK9HaB4hOOA2wDz+logLJNGM/UFqBv2XMHdWHLKozqmWkrv4

PCjsuKA8vpvQ5DJkiHRw6LV1irYP1tvHuzZYI3CKRtlTWgWOa3yR7BvjkXaSRrfd9S/

1TBkRO++rvnoAWOg/8ZBlpRokkqBjMxgSMZhfmIeVTKY+o1kgT/

I50jRw5o0u0rs9hCbvj5jVD74UcX5EA0gRdU5nsmiNNr3LJzbwBP8sQJWKSLcR0g0bI

cnpS78Z6y84hkWOVQCclr/C1i7Pvowjygzlx9aq9B4Oz7DBJERx3/

NVY0vDauEo4bP/yAfSWwPjUQ/002WgebwZL/

X1HbZT35EAmNewCmPTs7M1WXF65M806WNqjJDTJFAzan7i8

vKSF2apO9+C7NKo2/gIkiS+fmlXEjrox9wWqsKhSsWayz/

moosrPc46O3H09QByf4NApV

vQ0kN7LxTdRDXlCa5i4O3BjaL1OL5Lc0Tw4oOXIqT8QpxP0O8B70VbuvSbGBq607Zza2s

3rhkfJSLgGQOAxKsIRz68J6EV+YJnZrz3OmmXQc7W79dwIqME8puStQi+6VefzGlptHTZR

xzikYzKNYLq+KFdmOejevThhmTNUOKeMaxzTSz/MK/SnsjbSg9DNDR7HvLbDs/

F4Md5tT/

sXCzpEuUd6E+Rm8YMGajp+dUMHn/

eGzGARW5LCI0ZRs6CtZ96TSMnuY2UGkmnArJe936ER

rt7o4oMwcW69nSYKJOnoKEVqWY9kjMcGQmp3wAewpXYB2M0lzxRTQ80jh/

YR8c6ibliiCfZtD6cjfg=",

 "dbUser": "IAMR:admin",

 "expiration": "2024-09-30T23:04:17.932000+00:00",

 "nextRefreshTime": "2024-10-01T00:49:17.932000+00:00"

}

Managing audit logs
Amazon Redshift allows you to log user activity, connections, and database operations by using

audit logs. Audit logs are published asynchronously into Amazon S3 or to AWS CloudWatch. These

logs are a way to monitor the requests to your clusters, which can be used for implementing secu-

rity requirements and for troubleshooting purposes. For example, let’s say that you want to find
the user who might have truncated a particular table on a particular day in the past. Audit logs

can uncover this information. Amazon Redshift provisioned clusters can be configured to send
audit logs to either Amazon S3 or AWS CloudWatch (https://docs.aws.amazon.com/redshift/

latest/mgmt/db-auditing.html#db-auditing-cloudwatch-provisioned). For Amazon Redshift

serverless endpoints, audit logs can be sent to Amazon CloudWatch. (https://docs.aws.amazon.

com/redshift/latest/mgmt/serverless-audit-logging.html).

https://docs.aws.amazon.com/redshift/latest/mgmt/db-auditing.html#db-auditing-cloudwatch-provisioned
https://docs.aws.amazon.com/redshift/latest/mgmt/db-auditing.html#db-auditing-cloudwatch-provisioned
https://docs.aws.amazon.com/redshift/latest/mgmt/serverless-audit-logging.html
https://docs.aws.amazon.com/redshift/latest/mgmt/serverless-audit-logging.html

Platform Authorization and Security198

Getting ready
To complete this recipe, you will need the following setup:

• An IAM user with access to Amazon Redshift and AWS Glue.

• An Amazon Redshift provisioned cluster deployed in the eu-west-1 AWS region. We will

use the cluster ID as [Your-Redshift_Cluster].

• Amazon Redshift provisioned cluster master user credentials.

• Access to any SQL interface, such as a SQL client or the Amazon Redshift query editor V2.

• An IAM role that can access Amazon S3. We will use it in the recipes as [Your-Redshift_

Role].

• An AWS account number. We will use it in recipes as [Your-AWS_Account_Id].

How to do it…
In this recipe, we will illustrate how to turn on audit logging into Amazon S3 (it is turned off by

default) and easily query it:

1. Connect to the AWS Amazon Redshift console and navigate to Amazon Redshift | Clusters

| [YOUR_CLUSTER]. Click on the Maintenance and monitoring tab and scroll down to

the Audit Logging option, as shown in the following screenshot:

Figure 6.14 – Enabling Amazon Redshift audit logging

Chapter 6 199

2. Click on the Edit button in Audit logging, set Enable audit logging to Yes, and select (or

create) an Amazon S3 bucket, as shown in the following screenshot:

Figure 6.15 – Configuring the target S3 buckets for logging

The previous option turns on connection logging, which will start capturing connec-

tion information such as client host IP and username, as detailed in https://docs.aws.

amazon.com/redshift/latest/mgmt/db-auditing.html#db-auditing-logs. Logs will

be delivered asynchronously hourly into the S3 prefix location.

3. Once the user connections are made in the Amazon Redshift cluster, connection logs are

delivered to the previously specified target Amazon S3 location, which can be verified
using the AWS Console for Amazon S3 or the AWS CLI using the aws s3 ls [AWS S3

Target bucket] command.

The logs files are organized as <AWS Account #>/redshift/<region>/<Year>/<Month>
/<Day>/<Hour>.

4. Create a new crawler named audit_crawl with a database called audit_logs_db and a

table called auditawslogs by using the Amazon S3 location configured in the preceding

step. Choose Add crawler under Tutorials. For step-by-step instructions on configuring
the AWS Glue crawler, refer to Chapter 10, Lakehouse Architecture

https://docs.aws.amazon.com/redshift/latest/mgmt/db-auditing.html#db-auditing-logs
https://docs.aws.amazon.com/redshift/latest/mgmt/db-auditing.html#db-auditing-logs

Platform Authorization and Security200

5. Run the audit_crawl crawler. Once the crawler has finished, you will find a new table
named auditawslogs under Data Catalog | Databases | Tables, as shown in the following

screenshot:

Figure 6.16 – auditawslogs

6. Connect to the SQL client using the superuser credentials and create audit_logs schema

pointing to the AWS Glue audit_logs_db database created previously:

create external schema audit_logs

from data catalog

database 'audit_logs_db'

iam_role 'arn:aws:iam::[Your-AWS_Account_Id]:role/[Your-Redshift_

Role]'

create external database if not exists;

7. Use the following query to retrieve audit information:

SELECT col0 AS event,

 col1 AS recordtime,

 col2 AS remotehost,

 col3 AS remoteport,

 col4 AS pid,

 col5 AS dbname,

 col6 AS username,

 col7 AS authmethod,

Chapter 6 201

 col8 AS duration,

 col9 AS sslversion,

 col10 AS sslcipher,

 col11 AS mtu,

 col12 AS sslcompression,

 col13 AS sslexpansion,

 col14 AS iamauthguid,

 col15 AS application_name,

 col16 AS driver_version,

 col17 AS os_version,

 col18 AS plugin_name

FROM audit_logs.auditawslogs

WHERE partition_5 = 25

AND partition_4 = 12

AND partition_3 = 2020 LIMIT 10;

Here is the output of the preceding code:

event,recordtime,remotehost,remoteport,pid,dbname,username,authmethod,

duration,sslversion,sslcipher,mtu,sslcompression,sslexpansion,

iamauthguid,application_name,driver_version,os_version,plugin_name

authenticated Fri, 25 Dec 2020 09:02:04:228 [local]

49050 dev rdsdb Ident 0 0

initiating session Fri, 25 Dec 2020 09:02:04:228 [local]

49050 dev rdsdb Ident 0 0

disconnecting session Fri, 25 Dec 2020 09:02:04:346 [local]

49050 dev rdsdb Ident 118856 0

authenticated Fri, 25 Dec 2020 09:02:40:156 [local]

49238 dev rdsdb Ident 0 0

As observed in the preceding output, all the session activity is logged as part of audit logging and

can be easily queried using SQL statements.

How it works…
Audit logs are also available in system log tables, SYS_USERLOG (https://docs.aws.amazon.com/

redshift/latest/dg/r_STL_USERLOG.html) and SYS_CONNECTION_LOG (https://docs.aws.

amazon.com/redshift/latest/dg/r_STL_CONNECTION_LOG.html), but retention is limited in

system tables.

https://docs.aws.amazon.com/redshift/latest/dg/r_STL_USERLOG.html
https://docs.aws.amazon.com/redshift/latest/dg/r_STL_USERLOG.html
https://docs.aws.amazon.com/redshift/latest/dg/r_STL_CONNECTION_LOG.html
https://docs.aws.amazon.com/redshift/latest/dg/r_STL_CONNECTION_LOG.html

Platform Authorization and Security202

For longer retention and convenient sharing of the audit information, Amazon Redshift logs can

be enabled, which asynchronously send logs to Amazon S3. The user activity log can be enabled

by setting the enable_user_activity_logging parameter to true in the database parameter

group in addition to the connection logs.

Monitoring Amazon Redshift
Monitoring the cluster performance metrics allows you to ensure the cluster is healthy. Amazon

Redshift publishes metrics such as CPU, disk utilization, and query workloads continuously, which

can be automatically monitored for anomalies to trigger notification events. Amazon Redshift
publishes cluster performance metrics to AWS CloudWatch (https://docs.aws.amazon.com/

AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html) as well, which allows you

to monitor all your AWS services in a centralized location.

Getting ready
To complete this recipe, you will need the following setup:

• An IAM user with access to Amazon Redshift and Amazon SNS

• An Amazon Redshift provisioned or serverless endpoint deployed in the eu-west-1 AWS

region

• An Amazon SNS topic (called AmazonRedshiftHealthNotification) to receive the alarm

notifications using https://docs.aws.amazon.com/sns/latest/dg/sns-create-topic.
html

How to do it…
In this recipe, we will illustrate how to watch the cluster and query monitoring metrics and also

set up a health check alarm:

1. Connect to the AWS Amazon Redshift console and navigate to Amazon Redshift | Clusters

| [YOUR_CLUSTER]. Click on Cluster performance to view metrics such as CPU and disk

utilization, as shown in the following screenshot:

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html
https://docs.aws.amazon.com/sns/latest/dg/sns-create-topic.html
https://docs.aws.amazon.com/sns/latest/dg/sns-create-topic.html

Chapter 6 203

Figure 6.17 – Monitoring cluster performance

2. Click on the Query Monitoring tab, which displays the data warehouses’s performance

along with query history, a list of queries that are running/completed, along with the

status of the queries:

Figure 6.18 – Data warehouse performance

Performance metric monitoring also allows us to get insights into the overall workload

in the cluster. You can drill down into individual queries or look at users with the highest

workload.

Platform Authorization and Security204

3. Choose Query History. Search by query_id or sql text. Select query_id, this will bring

you to the query details. This view provides detailed insights into each query.

Figure 6.19 – Query details

4. Choose Query plan� Select child query� This will bring you to a detailed view of the query

plan. This view gives insights into query performance and what streams in the query can

be optimized. In this example, the query used a nested loop join, which is cross-joining

two tables. This could be the result of overlooking the join condition in the query.

Chapter 6 205

Figure 6.20 – Query plan performance breakdown

5. Click on Amazon Redshift | Alarms | Create alarm and choose the following options to

set up a health check alarm for the cluster:

a. Cluster identifier: Choose the Amazon Redshift cluster that you want to set up

the alarm with

b. Alarm for metric: Choose the maximum for all nodes

c. When metric value is: Less than (<) 1

d. If the alarm state is maintained for: 10 consecutive periods of 5 minutes

6. In the alarm details, choose the following options:

a. Alarm name: Any meaningful name for the health alarm

b. Notification: Enabled

c. Notify SNS topic: Select AmazonRedshiftHealthNotification

7. Click on Create alarm to complete the setup of the health check alarm.

Platform Authorization and Security206

How it works…
The health check alarm is a binary value, where 1 indicates a healthy cluster node and 0 indicates

an unhealthy node. The health check alarm is monitoring for any value that is less than 1 for 10

consecutive instances for a duration of 5 minutes, at which point it will notify the SNS topic. Simi-

larly, other performance metrics and be configured and notified when the thresholds are breached.

Single sign-on using AWS IAM Identity Center
AWS IAM Identity Center allows you to manage single sign-on access to your AWS accounts and

applications from a single location. Amazon Redshift now integrates with AWS IAM Identity

Center, supporting trusted identity propagation (https://docs.aws.amazon.com/singlesignon/

latest/userguide/trustedidentitypropagation-overview.html) and the use of third-party

identity providers for the authentication and authorization of Redshift users. A list of supported

third-party identity providers can be found at https://docs.aws.amazon.com/singlesignon/

latest/userguide/tutorials.html. IAM Identity Center allows automatic provisioning of users

and groups from an identity provider (IdP) into IAM Identity Center using the SCIM v2.0 protocol.

This integration ensures accurate and up-to-date user and group data is in AWS IAM Identity

Center. This integration simplifies access to the Redshift data warehouse and enables the use of
database role-based access control for enhanced security.

Getting ready
To complete this recipe, you will need the following setup:

• An IAM user with access to the Amazon Redshift console and AWS IAM.

• An Amazon Redshift serverless endpoint deployed in the eu-west-1 AWS region.

• Amazon Redshift serverless endpoint master user credentials.

• Access to the Amazon Redshift query editor V2.

• Enable IAM Identity Center. For more information, follow the steps at https://docs.aws.

amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html.

• An Okta account that has an active subscription. You need an admin role to set up the

application on Okta. If you’re new to Okta, you can sign up for a free trial (https://www.

okta.com/free-trial) or sign up for a developer account (https://developer.okta.

com/). Create a user called ethan.joe@mail.com and a group called awssso-idp-sales.

https://docs.aws.amazon.com/singlesignon/latest/userguide/trustedidentitypropagation-overview.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/trustedidentitypropagation-overview.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/tutorials.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/tutorials.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://www.okta.com/free-trial
https://www.okta.com/free-trial
https://developer.okta.com/
https://developer.okta.com/

Chapter 6 207

• Connect IAM Identity Center with your preferred IdP and sync users and groups. For

this recipe, we will use Okta. Follow the steps in https://docs.aws.amazon.com/

singlesignon/latest/userguide/gs-okta.html.

• An AWS account number. We will reference it in the recipes as [Your-AWS_Account_Id].

How to do it…
In this recipe, we will demonstrate how to use Okta identity provider with AWS IAM Identity

Center to enable single sign-on access to Amazon Redshift in a single account setup. We will use

the query editor v2:

1. Enable Amazon Redshift as an AWS-managed application with IAM Identity Center. In

the Redshift console, on the left navigation pane, choose IAM Identity Center connections

(https://us-west-2.console.aws.amazon.com/redshiftv2/home?region=us-west-2#/

serverless-iam-idc-integration).

Figure 6.21 – Redshift console IAM Identity Center connections

https://docs.aws.amazon.com/singlesignon/latest/userguide/gs-okta.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/gs-okta.html
https://us-west-2.console.aws.amazon.com/redshiftv2/home?region=us-west-2#/serverless-iam-idc-integration
https://us-west-2.console.aws.amazon.com/redshiftv2/home?region=us-west-2#/serverless-iam-idc-integration

Platform Authorization and Security208

2. Choose Create Application, then select Next:

Figure 6.22 – Redshift console IAM Identity Center connection

3. The IAM Identity Center Redshift connection setup has three sections:

a. Connection properties: For the IAM Identity Center display name, use redshift-

idc-app. For the Managed application name, use the default name.

Figure 6.23 – Redshift connection with IAM Identity Center

b. For Connection with third party identity providers, use awsidc�

Chapter 6 209

Figure 6.24 – Connection with third party identity providers

c. For IAM role for IAM Identity Center access, select the Redshift role.

Figure 6.25 – IAM role for IAM identity Center access

4. Select Enable the query editor V2 application to allow IAM Identity Center users and

groups to connect to Redshift and run queries based on the provided permissions. Select

AWS Lake Formation access grants for trusted identity propagation.

Figure 6.26 – Enable Redshift query editor V2 and trusted identity propagation

Platform Authorization and Security210

5. Choose Next

6. As for this recipe we will be using query editor V2 choose No

Figure 6.27 – Client connections through third-party IdPs

7. Choose Next�

8. Validate the configuration and choose Create application.

9. With a successful setup, you will see that the status is now connected for the application.

Figure 6.28 – Successful setup of the Redshift managed application

10. Choose redshift-integration-app. Save the IAM Identity Center managed application ARN.

This will be referred to as [IDC-APPLICATION-ARN].

Figure 6.29 – Managed application configuration

Chapter 6 211

11. Assign users or groups from IAM Identity Center (IDC) to the Redshift application. On

the Redshift console, choose the managed application that was created in the previous

step. This configuration allows you to add all or selected groups from IAM Identity Center
to the Redshift application. This allows you to control who should get access to connect

to the Redshift data warehouse. Choose Groups.

Figure 6.30 – Select groups to add to Redshift managed application

12. Choose Assign. Enter the name of the group, awssso-idp-sales, and select the group.

Figure 6.31– Add groups to the Redshift managed application

13. Choose Assign�

Figure 6.32 – Sales group addition to Redshift managed application

Let’s now associate an IAM Identity Center application with a Redshift serverless endpoint:

1. Connect to the Redshift serverless endpoint using the SQL client or query editor v2. Con-

nect using admin credentials.

Platform Authorization and Security212

2. Enter the following code to create the integration:

CREATE IDENTITY PROVIDER "redshift-idc-app" TYPE AWSIDC

NAMESPACE 'awsidc'

APPLICATION_ARN 'IDC-APPLICATION-ARN]'

IAM_ROLE 'arn:aws:iam::[Your-AWS_Account_Id]:role/[Your-Redshift_

Role]';

3. To check that the identity provider has been created, you can run the following code:

select * from svv_identity_providers;

4. We will now create Redshift roles corresponding to the names of the IAM Identity Center

groups that were synched from Okta. Use the following code to create a role in Redshift.

Here, the awsidc namespace is the prefix for the group name in IAM Identity Center:

create role "awsidc:awssso-idp-sales";

5. Set up the schema and tables for this recipe. Use the following code to create the store_

sales schema and table:

create schema sales_schema;

CREATE TABLE IF NOT EXISTS sales_schema.store_sales

(

 id INTEGER ENCODE az64,

 produce_name varchar(20),

 purchase_amount INTEGER ENCODE az64

)

DISTSTYLE AUTO

;

Insert into sales_schema.store_sales values (1,'product1',1000);

Insert into sales_schema.store_sales values (2,'product2',2000);

Insert into sales_schema.store_sales values (3,'product3',3000);

Insert into sales_schema.store_sales values (4,'product4',4000);

6. Grant access to the store_sales schema and table to the "awsidc:awssso-idp-sales"

Redshift role:

grant usage on schema sales_schema to role "awsidc:awssso-idp-

sales";

grant select on all tables in schema sales_schema to role

"awsidc:awssso-idp-sales";

Chapter 6 213

We will now create a permission set to grant console access to the Amazon Redshift query editor

V2 application:

1. Navigate to the IAM Identity Center console. From the left navigation pane, choose Per-

mission sets.

2. Choose create permission. Then choose Custom permission set. Choose next.

Figure 6.33 – Custom permission setup

3. Expand the custom managed policy and enter the name Chapter6RedshiftPolicy, which

is the policy created using the CloudFormation template in Chapter 6.

Figure 6.34 – AWS Managed Policy Redshift query editor V2 read sharing

Platform Authorization and Security214

Figure 6.35 – Customer managed policy

4. Choose Next.

5. Enter the permission set name redshift-permission-set and put https://eu-west-2.

console.aws.amazon.com/sqlworkbench/home in the relay state field. The following

screenshot shows the values:

Figure 6.36 – Permission set

6. Choose Next. Review the permission set configuration and choose Create.

Let’s assign IAM Identity Center groups to accounts:

1. From the left navigation pane of the IAM Identity Center, under Multi-account

permissions, choose AWS accounts.

2. Select the account you want to assign single sign-on to. Then, choose Assign users or

groups.

https://eu-west-2.console.aws.amazon.com/sqlworkbench/home
https://eu-west-2.console.aws.amazon.com/sqlworkbench/home

Chapter 6 215

3. Choose awssso-idp-group. Choose Next.

Figure 6.37 – Assigning users and groups to an AWS account

4. Choose the redshift-permission-set permission set. Choose Next.

5. Choose submit. This step completes the setup.

Federate access to Amazon Redshift query editor V2:

1. Navigate to the IAM Identity Center console. Choose dashboard.

2. Choose the AWS access portal URL from Settings summary on the right pane.

Figure 6.38 – Access portal URL from IAM Identity Center

Platform Authorization and Security216

3. This will open a browser window. Type in the username ethan.joe@mail.com, enter the

credentials, and choose Sign in.

Figure 6.39 – Authentication using Okta sign in

4. Expand the account and choose redshift-permission-set. This will take you to Redshift

query editor v2.

5. Choose your Redshift serverless endpoint and edit the connection.

6. Choose IAM Identity Center.

Figure 6.40 – Redshift query editor v2 connection

Chapter 6 217

7. Run the following code to check the current user:

select current_user;

Figure 6.41 – Current user output

8. Run the following code to select the sales_schema.store_sales table:

select * sales_schema.store_sales;

Figure 6.42 – Query output

9. Let’s try to delete a record. This will produce a permission denied error as the user does

not have delete access:

delete from sales_schema.store_sales where id = 1;

Output:

ERROR: permission denied for relation store_sales

Platform Authorization and Security218

How it works…
By turning on the metadata security flag for a database, you can restrict the listing of metadata
objects to only the objects that the user or role has access to. This enables you to hide metadata

from one tenant when the schema names and table names include tenant names in order to

comply with privacy controls.

Figure 6.43 – Redshift query editor V2 workflow with IAM Identity center and an external

identity provider

Access the AWS IAM Identity Center dashboard in the Management Account to get the URL for

the AWS access portal. Use the URL to go to the AWS access portal. A browser popup will appear,

prompting you to enter your IdP credentials. After successful authentication, you’ll be logged

into the AWS Console as a federated user. Choose your AWS account and choose the Amazon

Redshift query editor v2 application. In the query editor v2, select the IAM Identity Center au-

thentication method.

Query editor v2 invokes the browser flow, where you re-authenticate using your IdP credentials.
You have already entered your IdP credentials, which are cached in the browser. At this step, the

federation flow with IAM Identity Center initiates, and at the end of this flow, the session token
and access token are available to the query editor v2 console in the browser as cookies.

Chapter 6 219

Redshift retrieves your authorization details based on the session token retrieved and fetches the

user’s group membership from IAM Identity Center.

You are redirected back to query editor v2 upon successful authentication, logged in as an IAM

Identity Center authenticated user.

See also…
If you have a multi-account setup with management and member accounts, take a look at this

blog: https://aws.amazon.com/blogs/big-data/integrate-identity-provider-idp-with-

amazon-redshift-query-editor-v2-and-sql-client-using-aws-iam-identity-center-for-

seamless-single-sign-on/.

Metadata security
Metadata security (https://docs.aws.amazon.com/redshift/latest/dg/t_metadata_security.

html) in Amazon Redshift allows more granular control over who can view metadata about data

objects such as tables, views, and functions. When enabled, users can only see metadata for objects

they have access to. This metadata security feature can be beneficial in scenarios where a single
data warehouse holds data for multiple tenants, and tenant-specific schema or table names are
used. By restricting metadata visibility between tenants, you can prevent tenants from viewing

the metadata of other tenants. This helps maintain the privacy and separation between different

tenants occupying the same data warehouse infrastructure. Metadata security supports all data

object types and can be enabled or disabled using the ALTER SYSTEM command. Granting the

ACCESS CATALOG permission to a role is one way to control who can view the data.

Getting ready
To complete this recipe, you will need:

• An Amazon Redshift data warehouse deployed in the eu-west-1 AWS region

• Amazon Redshift data warehouse master user credentials

• Access to any SQL interface, such as a SQL client or the Amazon Redshift query editor v2

https://aws.amazon.com/blogs/big-data/integrate-identity-provider-idp-with-amazon-redshift-query-editor-v2-and-sql-client-using-aws-iam-identity-center-for-seamless-single-sign-on/
https://aws.amazon.com/blogs/big-data/integrate-identity-provider-idp-with-amazon-redshift-query-editor-v2-and-sql-client-using-aws-iam-identity-center-for-seamless-single-sign-on/
https://aws.amazon.com/blogs/big-data/integrate-identity-provider-idp-with-amazon-redshift-query-editor-v2-and-sql-client-using-aws-iam-identity-center-for-seamless-single-sign-on/
https://docs.aws.amazon.com/redshift/latest/dg/t_metadata_security.html
https://docs.aws.amazon.com/redshift/latest/dg/t_metadata_security.html

Platform Authorization and Security220

How to do it...
In this recipe, we will use the multi-tenant scenario to permit users to only see the metadata of

objects the user has access to:

1. Connect to the Amazon Redshift data warehouse using the SQL client or Redshift query

editor v2. Create a database called metadata_security using the following code:

Create database metadata_security.

2. Connect to the metadata_security database and create schema and tables for tenant1

and tenant2 using the following code:

Create database metadata_security.

create schema tenant1_schema;

create table tenant1_schema.tenant1

(tenant1_col1 varchar(10)

);

create schema tenant2_schema;

create table tenant2_schema.tenant2

(tenant2_col1 varchar(10)

);

3. Create users and roles using the following code:

create user tenant1_user with password 'Test1243!';

create user tenant2_user with password 'Test1234!';

create role tenant1_ro;

create role tenant2_ro;

grant role tenant1_ro to tenant1_user;

grant role tenant2_ro to tenant2_user;

4. Grant tenant1_ro access to tenant1_schema using the following code:

grant select on all tables in schema tenant1_schema to role tenant1_

ro;

grant usage on schema tenant1_schema to role tenant1_ro;

Chapter 6 221

5. Grant tenant2_ro access to tenant2_schema using following code.

grant select on all tables in schema tenant2_schema to role tenant2_

ro;

grant usage on schema tenant2_schema to role tenant2_ro;

6. Turn metadata security on:

ALTER SYSTEM SET metadata_security = TRUE;

7. Connect to the metadata_security database as the tenant1_user user. Expand the meta-

data of the database. tenant1_user is only able to see the tenant1_schema metadata.

Figure 6.44 – Metadata view for tenant1_user

8. Connect to the metadata_security database as the tenant2_user user. Expand the meta-

data of the database. tenant2_user is only able to see tenant2_schema metadata.

Figure 6.45 – Metadata view for tenant2_user

Platform Authorization and Security222

How it works…
By turning on the metadata security flag for a database, you can restrict the listing of metadata
objects to only the objects that the user or role has access to. This enables you to hide metadata

from one tenant when the schema names and table names include tenant names in order to

comply with privacy controls.

7
Data Authorization and Security

Amazon Redshift provides robust security features to help you protect sensitive data through

multiple layers of access control. We will cover how to implement fine-grained access controls
in Amazon Redshift using role-based access control (RBAC), including data masking, row-level,

and column-level security. These security mechanisms allow you to precisely manage who can

access specific data elements, ensuring that users can only view and modify the data they are
authorized to handle.

Specifically, the following topics are covered in this chapter:

• Implementing RBAC

• Implementing column-level security

• Implementing row-level security

• Implementing dynamic data masking

Technical requirements
Here are the technical requirements to complete the recipes in this chapter:

• Access to the AWS Console.

• An AWS administrator should create an IAM user by following Recipe 1 in Appendix. This

IAM user will be used in some of the recipes in this chapter.

• Amazon Redshift data warehouse deployed in the eu-west-1 AWS region.

• Amazon Redshift data warehouse master user credentials.

• Access to any SQL interface, such as a SQL client or the Amazon Redshift query editor.

Data Authorization and Security224

Implementing RBAC
It is best practice to design security by giving users the minimum privileges they need to do their

work. Amazon Redshift applies this principle through RBAC (https://docs.aws.amazon.com/

redshift/latest/dg/t_Roles.html), which grants privileges based on a user’s specific role.
Privileges are assigned at the role level, without needing to grant permissions individually for each

user. Redshift provides four system-defined roles (https://docs.aws.amazon.com/redshift/
latest/dg/r_roles-default.html) to start with, and you can create additional, more specific
roles with targeted privileges. RBAC allows you to limit access to certain commands and assign

roles to authorized users, as well as set object-level and system-level privileges for those roles.

Roles can be nested using role hierarchy. RBAC enables you to apply fine-grained access control
such as column-level security, row-level security, and dynamic data masking.

Getting ready
To complete this recipe, you will need:

• An Amazon Redshift data warehouse deployed in the eu-west-1 AWS region

• Amazon Redshift data warehouse master user credentials

• Access to any SQL interface, such as a SQL client or the Amazon Redshift query editor v2

How to do it…
In this recipe, we will create three database roles: read-only, read-write, and admin. Using the rec-

ipe table as an example. The analyst user with the read-only role will be able to run select queries.

The dataengineer user with the read-write role will be able to insert, delete, and update rows in

the customer table. The dbaadmin user with the admin role will be assigned the system-defined
sys:dba role. Let’s look at the steps:

1. Connect to Amazon Redshift data warehouse using the SQL client or Redshift query editor

v2. Create schema data_analytics using the following code;

CREATE SCHEMA if not exists data_analytics;

2. Create the recipe table using the following code:

CREATE TABLE data_analytics.recipe (

 recipe_id INT PRIMARY KEY,

 recipe_name VARCHAR(100) NOT NULL,

 ingredients VARCHAR(500) NOT NULL,

 instructions VARCHAR(1000) NOT NULL,

https://docs.aws.amazon.com/redshift/latest/dg/t_Roles.html
https://docs.aws.amazon.com/redshift/latest/dg/t_Roles.html
https://docs.aws.amazon.com/redshift/latest/dg/r_roles-default.html
https://docs.aws.amazon.com/redshift/latest/dg/r_roles-default.html

Chapter 7 225

 cuisine VARCHAR(50) NOT NULL,

 dietary_tags VARCHAR(50),

 cook_time_minutes INT NOT NULL,

 prep_time_minutes INT NOT NULL,

 rating INT NOT NULL,

 num_reviews INT NOT NULL

);

3. Insert data into the recipe table using multi-value insert:

INSERT INTO data_analytics.recipe

 (recipe_id,recipe_name, ingredients, instructions, cuisine,

dietary_tags, cook_time_minutes, prep_time_minutes, rating, num_

reviews)

VALUES

 (1,'Vegetable Stir-Fry',

 'Broccoli, Bell Peppers, Carrots, Mushrooms, Tofu, Soy Sauce,

Garlic, Ginger',

 'Sauté vegetables in oil, add tofu and soy sauce, serve over

rice.',

 'Asian', 'Vegetarian, Vegan', 20, 15, 4.7, 112),

 (2,'Lentil Curry',

 'Lentils, Coconut Milk, Spinach, Onion, Garlic, Ginger, Curry

Powder, Cumin',

 'Sauté onions and spices, add lentils and coconut milk, simmer

until lentils are tender, add spinach.',

 'Indian', 'Vegetarian, Vegan', 45, 20, 4.3, 89),

 (3,'Vegetable Lasagna',

 'Lasagna Noodles, Ricotta Cheese, Mozzarella Cheese, Spinach,

Zucchini, Eggplant, Tomato Sauce',

 'Layer lasagna noodles, ricotta, vegetables, and tomato sauce,

bake until heated through.',

 'Italian', 'Vegetarian', 60, 45, 4.6, 134);

4. Create three users using the following code:

create user analyst password disable;

create user dataengineer password disable;

create user dbaadmin password disable;

Data Authorization and Security226

5. Create three database roles, read_ro, readwrite_ro, and admin_ro using the following

code:

create role read_ro;

create role readwrite_ro;

create role admin_ro;

6. Grant read-only access for the recipe table to the read_ro role. Grant the read-ro role

to the analyst user:

grant usage on schema data_analytics to role read_ro;

grant select on table data_analytics.recipe to role read_ro;

grant role read_ro to analyst;

7. Let’s run select on the recipe table as the analyst user to view the data using the following

code:

set session authorization 'analyst';

select * from data_analytics.recipe;

Figure 7.1 – List of records in the recipe table

8. Now, try to run an update as the analyst user on the table recipe using the following code.

You will get a permission denied error:

set session authorization 'analyst';

update data_analytics.recipe

set cook_time_minutes = 25

where recipe_name = 'Vegetable Stir-Fry'

--output

ERROR: permission denied for relation recipe [ErrorId: 1-66e5fe89-

060afafb3c5f700022ce6f7b]

9. Inherit the read_ro role to the readwrite_ro role to allow inheritance of permissions.

Grant write access on the recipe table to the readwrite_ro role:

reset session authorization;

grant role read_ro to role readwrite_ro;

grant update, insert, delete on table data_analytics.recipe to role

readwrite_ro;

Chapter 7 227

10. Grant readwrite_ro to the dataengineer user:

grant role readwrite_ro to dataengineer;

11. As the dataengineer user, let’s update the table recipe using the following code. The

diagram below shows the updated value for the cook_time_minutes column for the row

with the Vegetable Stir-Fry recipe:

set session authorization 'dataengineer';

update data_analytics.recipe

set cook_time_minutes = 25

where recipe_name = 'Vegetable Stir-Fry';

select * from data_analytics.recipe;

reset session authorization;

Figure 7.2 – Updated cook_time_minutes to 25

12. Grant the system-defined sys:dba role to admin_ro using the following code:

grant role sys:dba to role admin_ro;

13. Grant admin_ro to the dbaadmin user using the following code:

grant role admin_ro to dbaadmin;

14. Drop the data_analytics schema as the admin_ro user using the following code. This

drops the entire data_analytics schema:

set session authorization 'dbaadmin';

drop schema data_analytics cascade;

reset session authorization;

--output:

Output: drop cascades to table data_analytics.recipe

Data Authorization and Security228

15. Let’s review the roles assigned to users using the svv_user_grants system view. Run the

following code:

select * from svv_user_grants;

Figure 7.3 – Users to roles relationships

How it works…
RBAC allows you to do role inheritance. This simplifies the management of permissions. Roles
can be used to grant and revoke permissions at the system level and at the object level. It pro-

vides you with security controls to create custom roles with the added benefit of out-of-the-box
system-defined roles. System views (https://docs.aws.amazon.com/redshift/latest/dg/
svv_views.html) provide insights into the list of roles, role inheritance, and which role has access

to which database objects. This allows you to more easily understand and manage the access and

permissions in your Redshift database. This diagram summarizes RBAC.

Figure 7.4 – Role inheritance with privileges

https://docs.aws.amazon.com/redshift/latest/dg/svv_views.html
https://docs.aws.amazon.com/redshift/latest/dg/svv_views.html

Chapter 7 229

Implementing column-level security
Amazon Redshift supports fine-grained data security with column-level controls. Column-level
security can be applied to local tables, views, and materialized views. Applying column-level

security allows you to restrict access to personally identifiable information (PII) or payment

card information (PCI) to selective personas. For instance, the finance or human resources team
can be granted access to sensitive information but you can restrict access from the sales and

marketing team.

Getting ready
To complete this recipe, you will need:

• An Amazon Redshift data warehouse deployed in the eu-west-1 AWS region

• Amazon Redshift data warehouse master user credentials

• Access to any SQL interface, such as a SQL client or the Amazon Redshift query editor v2

How to do it…
1. In this recipe, we will use the customer table. Using column-level access control, the sales

user will be restricted from accessing the phone number column.

2. Connect to the Amazon Redshift cluster using the SQL client or query editor. Create the

customer table using the following code:

create table customer

(C_CUSTKEY integer,

 C_NAME varchar(15),

 C_NATIONKEY integer,

 c_PHONE varchar(15),

 C_ACCTBAL decimal(6,2),

 C_MKTSEGMENT varchar(15),

 C_COMMENT varchar(25));

3. Insert the following records into the customer table:

Insert into customer values

(1, 'customer-0001', 1, '123-123-1234', 111.11, 'MACHINERY', 'FIRST

ORDER'),

(2, 'customer-0002', 2, '122-122-1234', 222.11, 'HOUSEHOLD', 'SECOND

ORDER');

Data Authorization and Security230

Let’s create the sales user:

CREATE user sales with password 'Sales1234';

4. Grant access to the sales users on all the columns in the customer table except the c_phone

column:

GRANT SELECT (C_CUSTKEY, C_NAME, C_NATIONKEY, C_ACCTBAL, C_

MKTSEGMENT, C_COMMENT) ON customer TO sales;

5. Let’s verify the column-level access for sales users. Run the following code. You will receive

a permission denied error message, as the sales user does not have access to the c_phone

column:

SET SESSION AUTHORIZATION 'sales';

SELECT CURRENT_USER;

SELECT * FROM customer;

--output

ERROR: 42501: permission denied for relation customer

6. Let’s select the columns in the select statement that the sales users have access to:

SET SESSION AUTHORIZATION 'sales';

SELECT CURRENT_USER;

SELECT C_CUSTKEY, C_NAME, C_NATIONKEY, C_ACCTBAL, C_MKTSEGMENT, C_

COMMENT FROM customer;

Here is the output of the preceding code:

Figure 7.5 – Verify the successful selection of the PII columns

How it works…
Using the GRANT and REVOKE statements, you can manage column-level access control in Am-

azon Redshift by enabling or disabling permissions for users, roles, and groups on tables, views,

and materialized views. You can refer to the GRANT and REVOKE syntax to get fine-grained
access control using https://docs.aws.amazon.com/redshift/latest/dg/r_GRANT.html and

https://docs.aws.amazon.com/redshift/latest/dg/r_REVOKE.html.

https://docs.aws.amazon.com/redshift/latest/dg/r_GRANT.html
https://docs.aws.amazon.com/redshift/latest/dg/r_REVOKE.html

Chapter 7 231

Implementing row-level security
Amazon Redshift using RBAC supports row-level security (RLS) (https://docs.aws.amazon.

com/redshift/latest/dg/t_rls.html) for granular access control over sensitive data, letting

you specify which users or roles can access specific records. RLS policies defined at the table level
restrict access to particular rows, complementing column-level security. Enforcing RLS policies

on tables limits the result sets returned to users based on the policy expressions. As a user with

the necessary permissions, such as a superuser and the sys:secadmin role, you can create, mod-

ify, or manage all row-level security policies for tables. Multiple RLS policies can be attached to

objects, roles, or users. Depending on the RLS CONJUNCTION TYPE setting for the table, Amazon

Redshift applies all the policies defined for a user using either AND or OR syntax.

Getting ready
To complete this recipe, you will need:

• An Amazon Redshift data warehouse deployed in the eu-west-1 AWS region

• Amazon Redshift data warehouse master user credentials

• Access to any SQL interface, such as a SQL client or the Amazon Redshift query editor v2

How to do it…
1. In this recipe, we will use row-level security on the customer table so users can only see

their own data. The Customer table contains multi-tenant data, data across internal and

external customers.

2. Connect to the Amazon Redshift data warehouse using the SQL client or the Redshift

query editor v2. Create schema data_analytics using the following code:

CREATE SCHEMA if not exists data_analytics;

3. Create the customer table using the following code:

Drop table if exists data_analytics.customer;

CREATE TABLE data_analytics.customer

(

 C_CUSTKEY BIGINT NOT NULL,

 C_NAME VARCHAR(25),

 C_NATIONKEY BIGINT,

 C_PHONE VARCHAR(15),

 C_ACCTBAL DECIMAL(18,4),

https://docs.aws.amazon.com/redshift/latest/dg/t_rls.html
https://docs.aws.amazon.com/redshift/latest/dg/t_rls.html

Data Authorization and Security232

 C_MKTSEGMENT VARCHAR(10),

 C_COMMENT VARCHAR(117)

);

4. Insert data into the customer table using the following code:

Insert into data_analytics.customer values

(1, 'customer-0001', 1, '123-123-1234', 111.11, 'MACHINERY', 'FIRST

ORDER'),

(2, 'customer-0002', 2, '122-122-1234', 222.11, 'HOUSEHOLD', 'SECOND

ORDER'),

(3, 'customer-0003', 3, '122-122-1234', 333.11, 'RETAIL', 'Third

Order');

5. Let’s create users and roles, and grant roles to users:

CREATE ROLE internal;

CREATE ROLE external;

create user "customer-0001" PASSWORD DISABLE;

create user "customer-00010" PASSWORD DISABLE;

create user "external-user" password DISABLE;

GRANT ROLE internal TO "customer-0001";

GRANT ROLE internal TO "customer-00010";

GRANT ROLE external TO "external-user";

6. Create RLS policies for users who are logging directly into the data warehouse:

CREATE RLS POLICY see_only_own_user_rows

WITH (c_name varchar(25))

USING (c_name = current_user);Attach RLs policy to table

7. Attach the RLS policy to tables and roles:

ATTACH RLS POLICY see_only_own_user_rows

ON data_analytics.customer

TO ROLE internal;

Chapter 7 233

8. Grant the internal select access role on the customer table and the data_analytics sche-

ma:

GRANT USAGE on SCHEMA data_analytics to role internal;

GRANT SELECT ON data_analytics.customer to role internal;

9. Turn on RLS at the table level:

ALTER TABLE data_analytics.customer ROW LEVEL SECURITY on;

10. Let’s verify that the 'customer-0001' user only has one record:

SET SESSION AUTHORIZATION 'customer-0001';

select * from data_analytics.customer;

reset session authorization;

Figure 7.6 – Output for customer-0001 with RLS

11. Let’s verify the number of users for 'customer-00010'. The output will be zero records:

SET SESSION AUTHORIZATION 'customer-00010';

select * from data_analytics.customer;

--output zero records

reset session authorization;

12. Now let’s verify the number of users for externa-user:

SET SESSION AUTHORIZATION 'external-user';

select * from data_analytics.customer;

--output zero records

reset session authorization;

13. If you have an external-facing application for external users, you can set a context variable

for that session. In this example, it will be customer_name. Let’s create an RLS policy for

external users:

CREATE RLS POLICY see_only_own_customer_rows_external

WITH (c_name varchar(25))

USING (c_name = current_setting('app.customer_name', FALSE));

Data Authorization and Security234

14. Attach RLS to the table:

ATTACH RLS POLICY see_only_own_customer_rows_external ON data_

analytics.customer TO ROLE EXTERNAL;

15. Grant the external select role on the customer table:

grant usage on schema data_analytics to role EXTERNAL;

GRANT select ON TABLE data_analytics.customer TO ROLE EXTERNAL;

16. Apply RLS with the OR conjunction type:

ALTER TABLE data_analytics.customer ROW LEVEL SECURITY ON

CONJUNCTION TYPE or;

17. Let’s verify RLS for an external user using a context variable for the session:

SET SESSION AUTHORIZATION 'external-user';

select set_config('app.customer_name', 'customer-0003', FALSE);

select * from data_analytics.customer;

reset session authorization;

Figure 7.7 – Output for an external user with RLS

How it works…
Row-level security is built on the foundation of RBAC. A superuser or user with the sys:secadmin

role creates policies to apply fine-grained access control. These policies are attached to the table
and apply to SELECT, UPDATE, and DELETE operations. When the user queries tables with RLS,

based on the policy, it only returns records the user is authorized to see. Multiple policies can be

attached to a table, and a single policy can be attached to multiple tables. All attached policies on

the table can use the or or and conjunction types. System views can be used to audit and monitor

RLS policies (https://docs.aws.amazon.com/redshift/latest/dg/t_rls_ownership.html).

https://docs.aws.amazon.com/redshift/latest/dg/t_rls_ownership.html

Chapter 7 235

Implementing dynamic data masking
Dynamic data masking (DDM) (https://docs.aws.amazon.com/redshift/latest/dg/t_ddm.

html) lets you hide sensitive data. It is often used to meet regulations or privacy standards. DDM

allows you to control how sensitive data is displayed, based on a user’s permissions. This is done

at the time the data is accessed, not when it is stored. DDM is an alternative to permanently ob-

scuring the data during the data loading process. With DDM, you don’t need to modify your data

pipelines. You set up masking policies that determine who can see what data. These policies are

attached to tables and columns. The policies apply to individual users, roles, or everyone. DDM

makes it easier to adapt to changing privacy requirements, without needing to change your data

transformations, underlying data, or application queries.

Using DDM and Amazon Redshift Lambda User-Defined Functions (https://docs.aws.amazon.
com/redshift/latest/dg/udf-creating-a-lambda-sql-udf.html), you can apply data tokeni-

zation with your own policies or through integration with third-party partners. For reference, see

the Protegrity blog (https://aws.amazon.com/blogs/apn/data-tokenization-with-amazon-

redshift-dynamic-data-masking-and-protegrity/).

Getting ready
To complete this recipe, you will need:

• An Amazon Redshift data warehouse deployed in the eu-west-1 AWS region

• Amazon Redshift data warehouse master user credentials

• Access to any SQL interface, such as a SQL client or the Amazon Redshift query editor v2

How to do it…
1. In this recipe, we will use a DDM security policy on the card_number column in the pci_

data table to define how sensitive data is returned to users at query time.

2. Connect to Amazon Redshift data warehouse using the SQL client or the Redshift query

editor v2. Create the data_analytics schema using the following code:

CREATE SCHEMA if not exists data_analytics;

https://docs.aws.amazon.com/redshift/latest/dg/t_ddm.html
https://docs.aws.amazon.com/redshift/latest/dg/t_ddm.html
https://docs.aws.amazon.com/redshift/latest/dg/udf-creating-a-lambda-sql-udf.html
https://docs.aws.amazon.com/redshift/latest/dg/udf-creating-a-lambda-sql-udf.html
https://aws.amazon.com/blogs/apn/data-tokenization-with-amazon-redshift-dynamic-data-masking-and-protegrity/
https://aws.amazon.com/blogs/apn/data-tokenization-with-amazon-redshift-dynamic-data-masking-and-protegrity/

Data Authorization and Security236

3. Create the pci_data table using the following code:

Drop table if exists data_analytics.pci_data;

CREATE TABLE data_analytics.pci_data (

 card_number VARCHAR(16) NOT NULL,

 expiration_date VARCHAR(7) NOT NULL,

 customer_id VARCHAR(50) NOT NULL

);

4. Insert data into the pci_data table using the following code:

INSERT INTO data_analytics.pci_data (card_number, expiration_date,

customer_id)

VALUES

 ('4111111111111111', '03/25', 'John Doe'),

 ('5555555555554444', '08/26', 'Jane Smith'),

 ('6011111111111117', '12/24', 'customer-111'),

 ('3456789012345678', '05/27', 'Sarah Williams'),

 ('4012888888881881', '11/23', 'Michael Brown');

5. Let’s create users and roles, and grant roles to users. Grant select to the public role for

the pci_data table:

 create user "agent" PASSWORD DISABLE;

 create user "jane" PASSWORD DISABLE;

 create user "cust_ro" password DISABLE;

CREATE ROLE agent_ro;

CREATE ROLE nopci_ro;

CREATE ROLE cust_ro

-- Grant Roles to Users

GRANT ROLE agent_ro to agent;

GRANT ROLE nopci_ro to jane;

GRANT ROLE cust_ro to "customer-111";

GRANT SELECT ON data_analytics.pci_data TO PUBLIC;

GRANT usage on schema data_analytics to public;

Chapter 7 237

6. Create masking policies for the card_number column. The first policy, "Mask_CC_Full",

completely masks card_number; the second policy, Mask_CC_Partial, is redacting the

credit_card number; and Mask_CC_Raw uses an expression to return the raw card_number

for the current user matching customer_id:

 CREATE MASKING POLICY Mask_CC_Full

 WITH (credit_card VARCHAR(256))

 USING ('XXXXXXXXXXXXXXXX'::text);

CREATE FUNCTION REDACT_CREDIT_CARD (text)

 returns text

immutable

as $$

 select left($1,6)||'XXXXXX'||right($1,4)

$$ language sql;

CREATE MASKING POLICY Mask_CC_Partial

WITH (card_number VARCHAR(16))

USING (REDACT_CREDIT_CARD(card_number));

CREATE MASKING POLICY Mask_CC_Raw

WITH (card_number varchar(16), customer_id VARCHAR(50))

USING (

CASE customer_id WHEN current_user THEN card_number ELSE NULL END

);

7. Attach a masking policy to fully mask access to PUBLIC. PUBLIC is the default role:

ATTACH MASKING POLICY Mask_CC_Full

ON data_analytics.pci_data(card_number)

TO PUBLIC;

8. Attach the Mask_cc_partial and Mask_cc_Raw masking policies. Both of these masking

policies are attached to the pci_data table for the card_number column. Both masking

policies have been assigned priority to remove potential conflicts:

ATTACH MASKING POLICY Mask_CC_Partial

ON data_analytics.pci_data(card_number)

TO ROLE agent_ro

Data Authorization and Security238

priority 2;

ATTACH MASKING POLICY Mask_CC_Raw

ON data_analytics.pci_data(card_number)

USING (card_number, customer_id)

TO ROLE cust_ro

priority 1;

9. To check masking policies have been created, use the following code:

SELECT * FROM svv_masking_policy;

Figure 7.8 – Output for svv_masking_policy

10. To that confirm masking policies have been attached to tables, use the following code:

SELECT * FROM svv_attached_masking_policy;

Figure 7.9 – Output for svv_attached_masking_policy

11. Let’s run the following code to verify masking for the agent user. The agent user is able

to see the redacted card_number:

set session authorization 'agent';

select * from data_analytics.pci_data;

reset session authorization;

Chapter 7 239

Figure 7.10 – Output for redacted card_number

12. Let’s verify the masking policy for the Jane user using the following code:

set session authorization 'jane';

select * from data_analytics.pci_data;

reset session authorization;

Figure 7.11 – Output for fully masked card_number

13. Let’s verify the masking policy for the 'customer-111' user using the following code:

set session authorization 'customer-111';

select * from data_analytics.pci_data;

reset session authorization;

Figure 7.12 – Output for conditional masked card_number

Data Authorization and Security240

How it works…
DDM allows you to define configuration-driven, consistent, format-preserving, and irreversible
masked data values. This capability enables you to control your data masking approach using

familiar SQL. You can use RBAC to implement different levels of data masking. This involves cre-

ating a masking policy to identify which columns need to be masked, and you have the flexibility
to choose how the masked data will be displayed. For example, you can completely hide all the

information in the data, replace partial real values with wildcard characters, or define your own
masking method using SQL expressions, Python, or Lambda User-Defined Functions (UDFs).

Additionally, you can apply conditional masking based on the values in other columns, which

selectively protects the data in a table. You can use row-level masking, DDM, and column-level

security together on the table, materialized views, and late binding views to achieve fine-grained
access control.

8
Performance Optimization

Amazon Redshift provides out-of-the-box performance for most workloads. It defaults table de-

sign choices such as compression, sort, and distribution key to AUTO and is able to learn from user

workloads to automatically set up the right structure. For more information, see the Working with

automatic table optimization page in the docs (https://docs.aws.amazon.com/redshift/latest/

dg/t_Creating_tables.html). Amazon Redshift provides you with flexible controls that allow
you to optimize performance and make alternative configuration choices whenever necessary.
The sort, distribution key, and table encoding choices influence the performance of queries. In
this chapter, we will discuss the optimization techniques to improve throughput. Also, we will

take a deep dive into analyzing queries to understand the rationale behind the tuning exercise.

In this chapter, we will look into the following recipes:

• Configuring Amazon Redshift Advisor for provisioned clusters

• Managing column compression

• Managing data distribution

• Managing the sort key

• Analyzing and improving queries for provisioned clusters

• Configuring Workload Management (WLM) for provisioned clusters

• Utilizing concurrency scaling for provisioned clusters

• Optimizing Spectrum queries for provisioned clusters

https://docs.aws.amazon.com/redshift/latest/dg/t_Creating_tables.html
https://docs.aws.amazon.com/redshift/latest/dg/t_Creating_tables.html

Performance Optimization242

Technical requirements
Here are the technical requirements in order to complete the recipes in this chapter:

• Access to the AWS Management Console.

• AWS administrator permission to create an IAM user by following Recipe 1 in Appendix.

This IAM user will be used in some of the recipes in this chapter.

• AWS administrator permission to create an IAM role by following Recipe 3 in Appendix.

This IAM role will be used in some of the recipes in this chapter.

• AWS administrator permission to deploy the AWS CloudFormation template (https://

github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter08/

chapter_8_CFN.yaml) and create two IAM policies:

• An IAM policy attached to the IAM user that will give them access to Amazon

Redshift, Amazon EC2, AWS Secrets Manager, AWS IAM, AWS CloudFormation,

AWS KMS, AWS Glue, and Amazon S3.

• An IAM policy attached to the IAM role that will allow the Amazon Redshift data

warehouse to access Amazon S3.

• Attach an IAM role to the Amazon Redshift data warehouse (provisioned or serverless) by

following Recipe 4 in Appendix. Take note of the IAM role name; we will refer to it in the

recipes with [Your-Redshift_Role].

• An Amazon Redshift data warehouse deployed in the AWS Region eu-west-1.

• Amazon Redshift data warehouse master user credentials.

• Access to any SQL interface, such as a SQL client or Amazon Redshift Query Editor V2.

• An AWS account number; we will refer to it in the recipes with [Your-AWS_Account_Id].

• The code files available in the GitHub repo (https://github.com/PacktPublishing/
Amazon-Redshift-Cookbook-2E/tree/main/Chapter08).

• Access to AWS CloudShell.

https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter08/chapter_8_CFN.yaml
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter08/chapter_8_CFN.yaml
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter08/chapter_8_CFN.yaml
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/tree/main/Chapter08
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/tree/main/Chapter08

Chapter 8 243

Configuring Amazon Redshift Advisor for
provisioned clusters
Amazon Redshift Advisor was launched in mid-2018. It runs daily and continuously observes the

workload’s operational statistics on the data warehouse with the lens of best practices. Amazon

Redshift Advisor uses sophisticated algorithms to provide tailored best practice recommendations,

which enable you to get the best possible performance and cost savings. The recommendations

are prioritized based on their severity level and potential impact on the system, which eases

administration. Some of the recommendations include:

• Optimization of the copy command for optimal data ingestion

• Optimization of physical table design

• Optimization of manual workload management

• Cost optimization with a recommendation to delete clusters after taking a snapshot, if

the cluster is not utilized

Along with the Advisor recommendations, the automatic table optimization feature allows apply-

ing these recommendations automatically without requiring administrator intervention, creating

a fully self-tuning system.

In this recipe, you will see where to find Amazon Redshift Advisor to view the recommendations.

Getting ready
To complete this recipe, you will need the following setup:

• An IAM user with access to an Amazon Redshift provisioned cluster

• An Amazon Redshift provisioned cluster deployed in the AWS Region eu-west-1

• AWS CloudShell with the latest AWS CLI (https://docs.aws.amazon.com/cli/latest/

userguide/getting-started-install.html#getting-started-install-instructions)

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html#getting-started-install-instructions
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html#getting-started-install-instructions

Performance Optimization244

How to do it…
In this recipe, we will use the Amazon Redshift console and the AWS CLI to access the Advisor

recommendations for our cluster:

1. Navigate to the AWS Management Console and select Amazon Redshift.

2. On the left-hand side, you will see ADVISOR. Click on it.

3. If you have multiple clusters in a Region, you will be able to view the recommendations

for all the data warehouses. You can group the recommendations by data warehouse or

by category – cost, performance, security, or other.

Figure 8.1 – Access Amazon Redshift Advisor

4. You can distribute the recommendations by exporting them from the console to a file. To
export the recommendations from the Advisor page, select Export.

Figure 8.2 – Amazon Redshift Advisor recommendations

5. Using AWS CloudShell, run the following code using the AWS CLI to list the output of

Advisor’s recommendations for all clusters in the account:

aws redshift list-recommendations

Chapter 8 245

How it works…
Amazon Redshift builds recommendations by continuously analyzing the operational data of

your data warehouse. Advisor provides recommendations that will have a significant impact
on the performance of your data warehouse. Advisor, alongside automatic table optimization,

collects the query access patterns and analyzes them using a machine learning (ML) service to

predict recommendations about the sort and distribution keys. These recommendations are then

applied automatically to the target tables in the data warehouse. Advisor and automatic table

optimization run when the workload is low so that there is no impact on user queries.

Managing column compression
Amazon Redshift columnar architecture stores data column by column on the disk. Analytical

queries select a subset of the column and perform aggregation on millions to billions of records.

The columnar architecture reduces the I/O by selecting a subset of the columns and hence improves

query performance. When data is ingested into an Amazon Redshift table, it provides three to

four times compression. This further reduces the storage footprint, which in turn reduces I/O and

hence improves query performance. Reducing the storage footprint also saves you costs. Amazon

Redshift Advisor provides recommendations for compressing uncompressed tables.

In this recipe, you will see how Amazon Redshift automatically applies compression on new and

existing tables. You will also see how column-level compression can be modified for existing
columns.

Getting ready
To complete this recipe, you will need:

• An IAM user with access to Amazon Redshift

• An Amazon Redshift data warehouse deployed in the AWS Region eu-west-1

• Amazon Redshift data warehouse master user credentials

• Access to any SQL interface, such as a SQL client or Amazon Redshift Query Editor V2

• An IAM role attached to an Amazon Redshift data warehouse that can access Amazon S3;

we will refer to it in the recipes with [Your-Redshift_Role]

• An AWS account number; we will refer to it in the recipes with [Your-AWS_Account_Id]

Performance Optimization246

How to do it…
In this recipe, we will be analyzing the automatic table-level compression applied by Amazon

Redshift:

1. Connect to the Amazon Redshift data warehouse using a SQL client or Query Editor V2

and create the customer table using the following command:

drop table if exists customer;

CREATE TABLE customer

(

 C_CUSTKEY BIGINT NOT NULL,

 C_NAME VARCHAR(25),

 C_ADDRESS VARCHAR(40),

 C_NATIONKEY BIGINT,

 C_PHONE VARCHAR(15),

 C_ACCTBAL DECIMAL(18,4),

 C_MKTSEGMENT VARCHAR(10),

 C_COMMENT VARCHAR(117)

)

diststyle AUTO;

2. Let’s now analyze the compression types applied to the columns. Run the following com-

mand:

SELECT "column", type, encoding FROM pg_table_def

WHERE tablename = 'customer';

Here is the expected output:

 column | type | encoding

--------------+------------------------+----------

 c_custkey | bigint | az64

 c_name | character varying(25) | lzo

 c_address | character varying(40) | lzo

 c_nationkey | bigint | az64

 c_phone | character varying(15) | lzo

 c_acctbal | numeric(18,4) | az64

 c_mktsegment | character varying(10) | lzo

 c_comment | character varying(117) | lzo

Chapter 8 247

When no encoding type is specified for columns, the table is created with ENCODE AUTO.

Listing the encoding type of columns shows the default encoding, which is preserved. With

ENCODE AUTO, when Redshift determines a better encoding type based on the operational

metrics of your workload, it will automatically apply encoding. Amazon Redshift auto-

matically applies a compression type of az64 or AZ64 for INT, SMALLINT, BIGINT, TIMESTAMP,

TIMESTAMPTZ, DATE, and NUMERIC column types. az64 is Amazon’s proprietary compression

encoding algorithm designed to achieve a high compression ratio and improved query

processing. The default encoding of lzo is applied to varchar and character columns.

3. Now, let’s recreate the customer table with C_CUSTKEY encoded as raw using the following

SQL:

drop table if exists customer ;

CREATE TABLE customer

(

 C_CUSTKEY BIGINT NOT NULL encode raw,

 C_NAME VARCHAR(25),

 C_ADDRESS VARCHAR(40),

 C_NATIONKEY BIGINT,

 C_PHONE VARCHAR(15),

 C_ACCTBAL DECIMAL(18,4),

 C_MKTSEGMENT VARCHAR(10),

 C_COMMENT VARCHAR(117)

)

diststyle AUTO;

SELECT "column", type, encoding FROM pg_table_def

WHERE tablename = 'customer';

Refer to this page in the docs to learn more about different encoding types

in Amazon Redshift:

https://docs.aws.amazon.com/redshift/latest/dg/c_Compression_

encodings.html

https://docs.aws.amazon.com/redshift/latest/dg/c_Compression_encodings.html
https://docs.aws.amazon.com/redshift/latest/dg/c_Compression_encodings.html

Performance Optimization248

Here is the expected output:

Figure 8.3 – Output of the preceding query

Notice that the c_custkey column is encoded with raw encoding (none).

4. Let’s now use COPY to load data from Amazon S3 using the following command, replacing

[Your-AWS_Account_Id] and [Your-Redshift_Role] with the respective values:

COPY customer from 's3://packt-redshift-cookbook/RetailSampleData/

customer/' iam_role 'arn:aws:iam::[Your-AWS_Account_Id]:role/[Your-

Redshift_Role]' CSV gzip COMPUPDATE PRESET;

SELECT "column", type, encoding FROM pg_table_def

WHERE tablename = 'customer';

Here is the expected output:

Figure 8.4 – Output of the preceding query

Chapter 8 249

How it works…
Amazon Redshift by default applies compression, which helps to reduce the storage footprint

and hence improve query performance due to a decrease in I/O. Each column can have different

encoding types and columns that can grow and shrink independently. When no encoding is

specified, Redshift uses AUTO encoding and automatically switches to the optimal encoding type

based on workload performance. For an existing table, you can use the ANALYZE COMPRESSION

command to determine the encoding type that results in storage savings.

It is a built-in command that will find the optimal compression for each column. You can then
apply the recommended compression to the table using an alter statement or by creating a new

table with the new encoding types and copying the data from the old to the new table.

Managing data distribution
Distribution style is a table property that dictates how that table’s data is distributed throughout

the compute nodes. The goal of data distribution is to leverage the massively parallel processing

of Amazon Redshift and reduce the I/O during query processing to improve performance. Amazon

Redshift Advisor provides actionable recommendations on distribution style for the table with

the alter statement. Using automatic table optimization enables you to self-manage the table

distribution style based on workload patterns:

• KEY: The value is hashed; the same value goes to the same location (slice)

• ALL: All table data goes to the first slice of every compute node

• EVEN: Round-robin data distribution across the compute nodes and slices

Note

An Amazon Redshift command that contains COMPUPDATE determines the encoding

for the columns for an empty table even for columns set to raw encoding with no

compression. We first create the table with the column c_custkey set to encode raw.

Then, run the COPY command with the compupdate preset option, which determines

the encoding of the columns for an empty table. Then, we verify the encodings of the

columns and that the column c_custkey has the encoding type of az64.

Performance Optimization250

• AUTO: Applies EVEN, ALL, and KEY distribution based on the scenario

Figure 8.5 – Data distribution styles

In this recipe, you will see how Amazon Redshift’s automatic table style works and the benefits
of different distribution styles.

Getting ready
To complete this recipe, you will need:

• An IAM user with access to Amazon Redshift

• An Amazon Redshift data warehouse deployed in the AWS Region eu-west-1

• Amazon Redshift data warehouse master user credentials

• Access to any SQL interface, such as a SQL client or Amazon Redshift Query Editor V2

• An IAM role attached to an Amazon Redshift data warehouse that can access Amazon S3;

we will refer to it in the recipes with [Your-Redshift_Role]

• An AWS account number; we will refer to it in the recipes with [Your-AWS_Account_Id]

Chapter 8 251

How to do it…
In this recipe, we will create the customer table with different distribution keys and analyze the

join effectiveness and data distribution:

1. Connect to the Amazon Redshift data warehouse using a SQL client or Query Editor V2.

2. Let’s create the dwdate table with the default auto-distribution style. Then, run the COPY

command, replacing [Your-AWS_Account_Id] and [Your-Redshift_Role] with the re-

spective values:

DROP TABLE IF EXISTS dwdate;

CREATE TABLE dwdate

(

 d_datekey INTEGER NOT NULL,

 d_date VARCHAR(19) NOT NULL,

 d_dayofweek VARCHAR(10) NOT NULL,

 d_month VARCHAR(10) NOT NULL,

 d_year INTEGER NOT NULL,

 d_yearmonthnum INTEGER NOT NULL,

 d_yearmonth VARCHAR(8) NOT NULL,

 d_daynuminweek INTEGER NOT NULL,

 d_daynuminmonth INTEGER NOT NULL,

 d_daynuminyear INTEGER NOT NULL,

 d_monthnuminyear INTEGER NOT NULL,

 d_weeknuminyear INTEGER NOT NULL,

 d_sellingseason VARCHAR(13) NOT NULL,

 d_lastdayinweekfl VARCHAR(1) NOT NULL,

 d_lastdayinmonthfl VARCHAR(1) NOT NULL,

 d_holidayfl VARCHAR(1) NOT NULL,

 d_weekdayfl VARCHAR(1) NOT NULL

);

COPY public.dwdate from 's3://packt-redshift-cookbook/dwdate/' iam_

role 'arn:aws:iam::[Your-AWS_Account_Id]:role/[Your-Redshift_Role]'

CSV gzip COMPUPDATE PRESET dateformat 'auto';

Performance Optimization252

Here is the expected output:

Figure 8.6 – Output of the preceding query

Amazon Redshift by default sets the distribution style to AUTO(ALL). Amazon Redshift

automatically manages the distribution style for the table; for small tables, it sets ALL as

the distribution style. With the distribution style ALL, the data for this table is stored on

every compute node slice 0. The distribution style of ALL is well suited for small dimension

tables, which are not updated frequently.

3. Let’s create the customer table with the default AUTO distribution style using the following,

replacing [Your-AWS_Account_Id] and [Your-Redshift_Role] with the respective values:

DROP TABLE IF EXISTS customer;

CREATE TABLE public.customer

(

 C_CUSTKEY BIGINT NOT NULL encode raw,

 C_NAME VARCHAR(25),

 C_ADDRESS VARCHAR(40),

 C_NATIONKEY BIGINT,

 C_PHONE VARCHAR(15),

 C_ACCTBAL DECIMAL(18,4),

 C_MKTSEGMENT VARCHAR(10),

 C_COMMENT VARCHAR(117)

);

COPY customer from 's3://packtcookbook-hsp/ssb/customer/'

iam_role 'arn:aws:iam::[Your-AWS_Account_Id]:role/[Your-Redshift_

Role]' CSV gzip compupdate preset region 'eu-west-1';

4. To verify the distribution style of the customer table, execute the following command:

select "schema", "table", "diststyle", skew_rows

from svv_table_info

where "table" = 'customer';

Chapter 8 253

Here is the expected output:

Figure 8.7 – Output of the preceding query

Here, Amazon Redshift sets the distribution style to EVEN, based on the table size. The

distribution style of AUTO converts the table from ALL to EVEN based on the threshold of

records in the table.

5. Let’s now modify the distribution style of the customer table using the c_nationkey

column, by executing the following query:

alter table customer alter distkey C_NATIONKEY;

6. Now, let’s verify the distribution style of the customer table. Run the following query:

select "schema", "table", "diststyle", skew_rows

from svv_table_info

where "table" = 'customer';

Here is the expected output:

Figure 8.8 – Output of the preceding query

c_nationkey causes the skewness in the distribution, as shown by the skew_row column,

since it has less distinct values (low cardinality). Ideally, the skew_row ratio should be

less than 5. When data is skewed, some compute nodes will do more work compared to

others. The performance of the query is affected by the compute node that has more data.

7. Let’s now alter the distribution key for the customer table using a high-cardinality col-

umn, c_custkey. Run the following query and verify the table skew:

alter table customer alter distkey c_custkey;

select "schema", "table", "diststyle", skew_rows

from svv_table_info

where "table" = 'customer';

Performance Optimization254

Here is the expected output:

Figure 8.9 – Output of the preceding query

Now, the customer table has low skew_rows that will ensure all the compute nodes can perform

equal work when processing the query.

How it works…
Amazon data distribution is a physical table property. It determines how the data is distributed

across the compute nodes. The purpose of data distribution is to have every compute node work in

parallel to run the workload and reduce the I/O during join operations, to optimize performance.

Amazon Redshift’s automatic table optimizations enable you to achieve this. You also have the

option to select your distribution style to fine-tune your most demanding workloads to achieve
significant performance. Creating a Redshift table with automatic table optimization will auto-

matically change the distribution style based on the workload pattern. You can review the alter

table recommendations in the svv_alter_table_recommendations view and the actions applied

by automatic table optimization in the svl_auto_worker_action view.

Managing the sort key
Data sorting in Amazon Redshift refers to how data is physically sorted on the disk. Data sort-

ing is determined by the sort key defined on the table. Amazon Redshift automatically creates
in-memory metadata, called zone maps. Zone maps contain the minimum and maximum values

for each block. Zone maps automatically enable eliminating I/O by not scanning blocks that do

not contain data for queries. Sort keys make zone maps more efficient.

A sort key can be defined on one or more columns. The columns defined in the sort keys are based
on your query pattern. Most frequently, filtered columns are good candidates for the sort key. The
order of sort key columns is defined from low to high cardinality. Sort keys enable range-restricted
scans to prune blocks, eliminating I/O and hence optimizing query performance. Redshift Advisor

provides recommendations on optimal sort keys and automatic table optimization handles the

sortkey changes based on our query pattern.

In this recipe, you will see how the Amazon Redshift compound sort key works.

Chapter 8 255

Getting ready
To complete this recipe, you will need:

• An IAM user with access to Amazon Redshift

• An Amazon Redshift data warehouse deployed in the AWS Region eu-west-1

• Amazon Redshift data warehouse master user credentials

• Access to any SQL interface, such as a SQL client or Amazon Redshift Query Editor V2

• An IAM role attached to an Amazon Redshift data warehouse that can access Amazon S3;

we will refer to it in the recipes with [Your-Redshift_Role]

• An AWS account number; we will refer to it in the recipes with [Your-AWS_Account_Id]

How to do it…
In this recipe, we will use the lineitem table with sort keys and analyze the performance queries:

1. Connect to the Amazon Redshift data warehouse using a SQL client or Query Editor V2.

2. Let’s create the lineitem table with the default AUTO sort key using the following, replacing

[Your-AWS_Account_Id] and [Your-Redshift_Role] with the respective values:

drop table if exists lineitem;

CREATE TABLE lineitem

(

 L_ORDERKEY BIGINT NOT NULL,

 L_PARTKEY BIGINT,

 L_SUPPKEY BIGINT,

 L_LINENUMBER INTEGER NOT NULL,

 L_QUANTITY DECIMAL(18,4),

 L_EXTENDEDPRICE DECIMAL(18,4),

 L_DISCOUNT DECIMAL(18,4),

 L_TAX DECIMAL(18,4),

 L_RETURNFLAG VARCHAR(1),

 L_LINESTATUS VARCHAR(1),

 L_SHIPDATE DATE,

 L_COMMITDATE DATE,

 L_RECEIPTDATE DATE,

 L_SHIPINSTRUCT VARCHAR(25),

 L_SHIPMODE VARCHAR(10),

 L_COMMENT VARCHAR(44)

Performance Optimization256

)

distkey (L_ORDERKEY);

COPY lineitem from 's3://packt-redshift-cookbook/lineitem/' iam_role

'arn:aws:iam::[Your-AWS_Account_Id]:role/[Your- Redshift_Role]' CSV

gzip COMPUPDATE PRESET;

3. Let’s verify the sort key of the lineitem table with the default auto sort key using the

following query:

select "schema", "table", "diststyle", skew_rows, sortkey1, unsorted

from svv_table_info

where "table" = 'lineitem';

Here is the expected output:

Figure 8.10 – Output of the preceding query

As shown in the preceding output, the lineitem table is set with a sort key of AUTO(sortkey).

Amazon Redshift Advisor, based on your workload pattern, will make a recommendation

and the automatic table optimization will alter the table with the optimal sort key.

4. To see the effectiveness of block pruning using the sort key, run the following query and

note down the query_id:

SELECT

 l_returnflag,

 l_linestatus,

 sum(l_quantity) as sum_qty,

 sum(l_extendedprice) as sum_base_price,

 sum(l_extendedprice * (1 - l_discount)) as sum_disc_price,

 count(*) as count_order

FROM

 lineitem

Note

Depending on the size of the data warehouse, the COPY command will take

around 15 minutes due to the size of the data.

Chapter 8 257

WHERE

 l_shipdate = '1992-01-10'

GROUP BY

 l_returnflag,

 l_linestatus

ORDER BY

 l_returnflag,

 l_linestatus;

select last_user_query_id() as query_id;

Here is the expected output:

query_id

5409

5. Run the following query to measure the effectiveness of the sort key for the above query,

replacing [query_id], with the output from the preceding step:

SELECT query_id, step_id, table_name, is_rrscan, input_rows, output_

rows

from sys_query_detail where query_id in (5409)

and table_name like '%lineitem%'

order by query_id,step_id;

Here is the expected output:

Figure 8.11 – Output of the preceding query

 Note

Amazon Redshift captures operational statistics of each query step in

system tables. Details of SVL_QUERY_SUMMARY can be found at this link:

https://docs.aws.amazon.com/redshift/latest/dg/r_SVL_QUERY_

SUMMARY.html.

https://docs.aws.amazon.com/redshift/latest/dg/r_SVL_QUERY_SUMMARY.html
https://docs.aws.amazon.com/redshift/latest/dg/r_SVL_QUERY_SUMMARY.html

Performance Optimization258

input_rows indicates that Amazon Redshift was effectively able to use the sort key to

pre-filter records. is_rrscan is true for these range scans. Amazon Redshift automati-

cally leverages zone maps to prune out the blocks that do not match the filter criteria of
the query.

6. Let’s alter the lineitem table to add the column l_shipdate as the sort key. Most of the

queries we will run will use l_shipdate as the filter. l_shipdate is a low-cardinality

column:

alter table lineitem alter sortkey (L_SHIPDATE);

7. To see the effectiveness of the sort key, run the following query and capture the query ID:

SELECT

 l_returnflag,

 l_linestatus,

 sum(l_quantity) as sum_qty,

 sum(l_extendedprice) as sum_base_price,

 sum(l_extendedprice * (1 - l_discount)) as sum_disc_price,

 count(*) as count_order

FROM

 lineitem

WHERE

 l_shipdate = '1992-01-10'

GROUP BY

 l_returnflag,

 l_linestatus

ORDER BY

 l_returnflag,

 l_linestatus;

select last_user_query_id() as query_id_1;

Here is the expected output:

Note

Depending on the size of the data warehouse, the ALTER statement will take

around 15 minutes to complete due to the size of the data.

Chapter 8 259

query_id_1

5596

8. Run the following query to measure the effectiveness of the sort key for the above query,

replacing [query_id_1] with the output from the preceding step:

SELECT query_id, step_id, table_name, is_rrscan, input_rows, output_

rows

from sys_query_detail where query_id in ([query_id_1])

and table_name like '%lineitem%'

order by query_id,step_id;

Here is the expected output:

Figure 8.12 – Output of the preceding query

With the sort key l_shipdate applied to the table, block pruning is very effective, reducing

the pre-filtered records to 2,033,144.

9. Now, let’s modify the query to cast the l_shipdate column to the varchar data type and

then apply the filter. Run the following modified query and capture the query_id_2 output:

set enable_result_cache_for_session = off;

SELECT

 l_returnflag,

 l_linestatus,

 sum(l_quantity) as sum_qty,

 sum(l_extendedprice) as sum_base_price,

 sum(l_extendedprice * (1 - l_discount)) as sum_disc_price,

 count(*) as count_order

FROM

 lineitem

WHERE

 cast(l_shipdate as varchar(10)) = '1992-01-10'

GROUP BY

 l_returnflag,

 l_linestatus

Performance Optimization260

ORDER BY

 l_returnflag,

 l_linestatus;

select last_user_query_id() as query_id_2;

---expected sample output--—

query_id_2

5759

10. Now, let’s run the following query to analyze the effectiveness of the sort key columns,

replacing [query_id_1] and [query_id_2] with the query IDs from the preceding steps:

SELECT query, step, label, is_rrscan, rows, rows_pre_filter, is_

diskbased

from svl_query_summary where query in ([query_id_1],[query_id_2])

and label like '%lineitem%'

order by query,step;

Here is the expected output:

Figure 8.13 – Output of the preceding query

[query_id_1] , which used the l_shipdate filter, has an input_rows value of 173634575,

compared to [query_id_2], which used the pre-filtered and has an input_rows value

of 599037902, which means a full table scan was carried out. To make sort keys effective,

it is best practice to avoid applying functions or casting to sort key columns.

How it works…
Using the sort keys when creating tables allows efficient range-restricted scans of the data, when
the sort key is referenced in the where conditions. Amazon Redshift automatically leverages the

in-memory metadata to prune out the blocks. Sort keys make the zone maps more pristine. Ap-

plying sort keys on the most commonly used columns as filters in a query can significantly reduce
the I/O and hence optimize query performance for workloads of any scale. You can learn more

about sort keys at https://docs.aws.amazon.com/redshift/latest/dg/t_Sorting_data.html.

https://docs.aws.amazon.com/redshift/latest/dg/t_Sorting_data.html

Chapter 8 261

Analyzing and improving queries for provisioned
clusters
The default table encoding, sort key, and distribution key in Amazon Redshift is AUTO. Amazon

Redshift can learn from the workloads and automatically set the right encoding and sort and

distribution style, which are the biggest contributors to table design and optimization. Amazon

Redshift also provides insights into the query plan, which helps to optimize the queries when

authoring them. It lists the detailed steps it takes to fetch the data.

Getting ready
To complete this recipe, you will need:

• An IAM user with access to Amazon Redshift

• An Amazon Redshift provisioned cluster deployed in the AWS Region eu-west-1

• Amazon Redshift provisioned cluster master user credentials

• Access to any SQL interface, such as a SQL client or Amazon Redshift Query Editor V2

• An IAM role attached to an Amazon Redshift provisioned cluster that can access Amazon

S3; we will refer to it in the recipes with [Your-Redshift_Role]

• An AWS account number; we will refer to it in the recipes with [Your-AWS_Account_Id]

How to do it…
In this recipe, we will use the retail system dataset from Chapter 3, Loading and Unloading Data,

to perform analytical queries and explore opportunities to optimize them:

1. Connect to the Amazon Redshift provisioned cluster using any SQL interface, such as a

SQL client, and run EXPLAIN on a query:

explain

SELECT o_orderstatus,

 COUNT(o_orderkey) AS orders_count,

 SUM(l_quantity) AS quantity,

 MAX(l_extendedprice) AS extendedprice

FROM lineitem

 JOIN orders ON l_orderkey = o_orderkey

WHERE

 L_SHIPDATE = '1992-01-29'

GROUP BY o_orderstatus;

Performance Optimization262

Here is the expected output:

QUERY PLAN

 XN HashAggregate (cost=97529596065.20..97529596065.22 rows=3

width=36)

 -> XN Hash Join DS_BCAST_INNER (cost=3657.20..97529594861.20

rows=120400 width=36)

 Hash Cond: ("outer".o_orderkey = "inner".l_orderkey)

 -> XN Seq Scan on orders (cost=0.00..760000.00

rows=76000000 width=13)

 -> XN Hash (cost=3047.67..3047.67 rows=243814 width=31)

 -> XN Seq Scan on lineitem (cost=0.00..3047.67

rows=243814 width=31)

 Filter: (l_shipdate = '1992-01-29'::date)

As noted in the above output, the explain command provides insights into the steps

taken by the query. As you can see above, the lineitem and orders table are joined using

a hash join. Each step also provides the relative cost to review the expensive steps in the

query for optimization.

2. Now, run the analytical query using the following command to capture the query_id for

analysis:

SELECT o_orderstatus,

 COUNT(o_orderkey) AS orders_count,

 SUM(l_quantity) AS quantity,

 MAX(l_extendedprice) AS extendedprice

FROM lineitem

 JOIN orders ON l_orderkey = o_orderkey

WHERE L_SHIPDATE = '1992-01-29'

Note

Please also see https://docs.aws.amazon.com/redshift/latest/dg/c-

query-planning.html for a step-by-step illustration of the query planning

and execution steps.

https://docs.aws.amazon.com/redshift/latest/dg/c-query-planning.html
https://docs.aws.amazon.com/redshift/latest/dg/c-query-planning.html

Chapter 8 263

GROUP BY o_orderstatus;

select last_user_query_id() as query_id;

Here is the expected output:

query_id

24580051

Make note of the above query_id, which will be used in later steps to analyze the query.

3. Run the following command to analyze the effectiveness of the sort key column on the

lineitem table by replacing [query_id] with the query ID from the previous step:

SELECT step, label, is_rrscan, rows, rows_pre_filter, is_diskbased

from svl_query_summary where query = [query_id]

order by step;

Here is the expected output:

step | label | is_rrscan | rows

| rows_pre_filter | is_diskbased

------+---+-----------+-----

---+-----------------+-------------

 0 | scan tbl=1450056 name=lineitem | t |

57856 | 599037902 | f

 0 | scan tbl=361382 name=Internal Worktable | f |

1 | 0 | f

 0 | scan tbl=1449979 name=orders | t |

79119 | 76000000 | f

 0 | scan tbl=361380 name=Internal Worktable | f |

173568 | 0 | f

 0 | scan tbl=361381 name=Internal Worktable | f |

32 | 0 | f

As can be noticed from the above output, the query optimizer is able to effectively make

use of the range-restricted scan (is_rrscan) on the l_shipdate column in the lineitem

table, to reduce the number of rows from 599037902 to 57856. Also, none of the steps spill

to disk, as indicated by is_diskbased = f.

Performance Optimization264

4. Amazon Redshift provides consolidated alerts from the query execution to prioritize the

analysis effort. You can run the following query to view the alerts from the query execution:

select event, solution

from stl_alert_event_log

where query in (24580051);

Here is the expected output:

Very selective query filter:ratio=rows(2470)/rows_pre_user_

filter(2375000)=0.001040 Review the choice of sort key to enable

range restricted scans, or run the VACUUM command to ensure the

table is sorted

In the above query output, since we already confirmed that sort keys are being used ef-

fectively, performing VACUUM will ensure data is sorted and range-restricted scans can be

more effective.

5. Another alert that you can see in the stl_alert_event_log is Statistics for the tables in the

query are missing or out of date. To fix this issue, you can run the analyze query as follows:

analyze lineitem;

Here is the expected output:

ANALYZE run successfully

Now, lineitem is updated with the current statistics that will enable the optimizer to pick an

optimal plan.

How it works…
Amazon Redshift automates performance tuning as part of the managed service. This includes

automatic vacuum delete, automatic table sort, automatic analyze, and Amazon Redshift Ad-

visor for actionable insights into optimizing cost and performance. These capabilities are en-

abled through an ML model that can learn from your workloads to generate and apply precise

high-value optimizations. You can read more about automatic table optimization here: https://

aws.amazon.com/blogs/big-data/automate-your-amazon-redshift-performance-tuning-

with-automatic-table-optimization/.

https://aws.amazon.com/blogs/big-data/automate-your-amazon-redshift-performance-tuning-with-automatic-table-optimization/
https://aws.amazon.com/blogs/big-data/automate-your-amazon-redshift-performance-tuning-with-automatic-table-optimization/
https://aws.amazon.com/blogs/big-data/automate-your-amazon-redshift-performance-tuning-with-automatic-table-optimization/

Chapter 8 265

Configuring Workload Management (WLM) for
provisioned cluster
Amazon Redshift workload management (WLM) enables you to set up query priorities in a

data warehouse. WLM helps you create query queues that can be defined based on different pa-

rameters, such as memory allotment, priority, user groups, query groups, and query monitoring

rules. Users generally use WLM to set priorities for different query types, such as long-running

versus short-running, ETL versus reporting, and so on. In this recipe, we will demonstrate how

to configure WLM within a Redshift data warehouse. Hence, you can manage multiple workloads
running on the same data warehouse and each of them can be assigned different priorities based

on business needs.

Getting ready
To complete this recipe, you will need the following setup:

• An IAM user with access to Amazon Redshift

• An Amazon Redshift provisioned cluster deployed in the AWS Region eu-west-1

How to do it…
In this recipe, we will configure the WLM for your data warehouse using the AWS Management
Console:

1. Open the Amazon Redshift console: https://console.aws.amazon.com/redshiftv2/

home.

Note

Amazon Redshift serverless automatically manages WLM. You do not need to con-

figure WLM on a serverless endpoint.

https://console.aws.amazon.com/redshiftv2/home
https://console.aws.amazon.com/redshiftv2/home

Performance Optimization266

2. In the left-hand toolbar, browse to CONFIG and select Workload management.

Figure 8.14 – Navigate to Workload management in the AWS Redshift console

3. On the Workload management page, we will need to create a new parameter group by

clicking the Create button.

Figure 8.15 – Configure a new parameter group

Chapter 8 267

4. A Create parameter group popup will open. Enter a Parameter group name and Descrip-

tion. Click on Create to finish creating a new parameter group.

Figure 8.16 – Create a new parameter group called custom-parameter-group

5. By default, Automatic WLM is configured under Workload Management. Automatic

WLM is recommended, and it calculates the optimal memory and concurrency for query

queues.

6. To create a new queue, click on Edit workload queues under the Workload queues section.

On the Modify workload queues: custom-parameter-group page, click on Add queue.

7. You can configure the queue name by replacing the Queue 1 string and configuring other
settings, such as Concurrency scaling mode to auto or off and Query priority to one of

five levels ranging from lowest to highest. Additionally, you can include the user groups,
user roles, or query groups that need to be routed to this specific queue.

Performance Optimization268

For example, we created an ETL queue, with concurrency scaling disabled, a query priority

of Normal, and a user role of data_engineers. The load and transform query groups will

be routed to this queue.

Figure 8.17 – Configure the ETL queue on the parameter group

8. You can repeat steps 6 and 7 to create a total of eight queues.

9. You can create query monitoring rules by selecting either Add rule from template or Add

custom rule. This allows you to perform a log, abort, or change query priority action based

on the predicates for the given query monitoring metrics.

For example, we created a rule to abort the query if more than 100 million rows are returned.

Figure 8.18 – Configure a query monitoring rule

10. To finish the configuration of the WLM settings, browse to the bottom of the page and
click Save.

Chapter 8 269

11. To apply the new WLM settings to the cluster, browse to CLUSTERS and choose the

checkbox beside the Amazon Redshift data warehouse to which you want to apply the

new WLM settings. Go to Actions and select Modify.

Figure 8.19 – Apply custom-parameter-group to your data warehouse

12. Under the Modify page, browse to the second set of Database configurations. Drop down

Parameter groups and select the newly created parameter group.

13. Go to the bottom of the page and select Modify Cluster. The changes are in the queue

and applied after the data warehouse is rebooted.

14. To reboot the data warehouse at an appropriate time that suits the business, click the

checkbox beside the Amazon Redshift data warehouse, go to Actions, and select Reboot.

A popup will appear to confirm the reboot. Select Reboot Cluster.

How it works…
Amazon Redshift’s WLM settings allow you to set the workload priorities and concurrency of

different types of workloads that run on an Amazon Redshift data warehouse. In addition, you

can apply Auto WLM (recommended), which manages the short query acceleration, memory

allotment, and concurrency automatically. Using manual WLM, you can configure the memory
and concurrency values for your workloads if needed (not recommended).

Performance Optimization270

Utilizing concurrency scaling for provisioned clusters
The concurrency scaling feature in Amazon Redshift allows you to support concurrent users and

queries for steady query performance. Amazon Redshift utilizes resources that are available in

a data warehouse to maximize throughput for an analytical query. Amazon Redshift uses WLM

to optimize query execution by running a limited number of queries concurrently, prioritizing

those that can complete quickly and managing the remaining queries to ensure efficient resource
utilization and overall performance.

With the concurrency scaling feature turned on, Amazon Redshift is able to instantly bring up

additional redundant data warehouses to run the queued-up queries and support burst traffic
into the data warehouse. The redundant data warehouses are automatically shut down once the

queries complete/there are no more queries waiting in the queue.

Getting ready
To complete this recipe, you will need:

• An Amazon Redshift provisioned cluster deployed in the AWS Region eu-west-1 with the

retail system dataset from Chapter 3, using the Loading data from Amazon S3 using COPY

recipe

• Amazon Redshift provisioned cluster master user credentials

• Access to any SQL interface, such as a SQL client or Amazon Redshift Query Editor V2

• Install the client tool par_psql (https://github.com/gbb/par_psql) and psql (https://

docs.aws.amazon.com/redshift/latest/mgmt/connecting-from-psql.html) on a Linux

machine that can connect to an Amazon Redshift data warehouse

Note

In Amazon Redshift, serverless concurrency scaling is enabled by default. You do not

need to configure concurrency scaling on a serverless endpoint.

https://github.com/gbb/par_psql
https://docs.aws.amazon.com/redshift/latest/mgmt/connecting-from-psql.html
https://docs.aws.amazon.com/redshift/latest/mgmt/connecting-from-psql.html

Chapter 8 271

How to do it…
In this recipe, we will use the par_psql (https://github.com/gbb/par_psql) tool to run parallel

queries on Amazon Redshift to simulate a concurrent workload:

1. Navigate to the Amazon Redshift console and then to Amazon Redshift > CLUSTERS >

your Amazon Redshift data warehouse. Click on the Properties tab and scroll down to

Database configurations, as shown in the following image:

Figure 8.20 – Database configurations

2. Select the parameter group associated with the Amazon Redshift data warehouse.

https://github.com/gbb/par_psql

Performance Optimization272

3. Verify that max_concurrency_scaling_data warehouses is set to a value > =1 and Work-

load queues has Concurrency scaling mode set to auto, as shown below:

Figure 8.21 – Workload queues

For a step-by-step guide to setting concurrency scaling, refer to the Configuring Workload
Management (WLM) for provisioned cluster recipe of this chapter.

4. Download the par_psql script from the following GitHub location: https://github.

com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter08/conc_

scaling.sql. Copy it into the same location that par_psql is installed. This script uses

the retail system dataset, mentioned in the Getting started section.

5. Run the following command using the SQL client to capture the starttime of the test:

select sysdate as starttime

Here is the expected output:

starttime

2020-12-04 16:10:43

6. Run the following command on the Linux box to simulate 100 concurrent query runs:

export PGPASSWORD=[PASSWORD]

./par_psql --file=conc_scaling.sql -h [YOUR AMAZON REDSHIFT HOST] -p

[PORT] -d [DATABASE_NAME] -U [USER_NAME]

7. Wait until all the queries have completed. Run the following query to analyze the query

execution, replacing [starttime] with the value corresponding to the date and time at

the start of the script execution:

https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter08/conc_scaling.sql
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter08/conc_scaling.sql
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter08/conc_scaling.sql

Chapter 8 273

SELECT w.service_class AS queue

 , case when q.concurrency_scaling_status = 1 then 'Y' else 'N'

end as conc_scaled

 , COUNT(*) AS queries

 , SUM(q.aborted) AS aborted

 , SUM(ROUND(total_queue_time::NUMERIC / 1000000,2)) AS

queue_secs

 , SUM(ROUND(total_exec_time::NUMERIC / 1000000,2)) AS

exec_secs

FROM stl_query q

 JOIN stl_wlm_query w

 USING (userid,query)

WHERE q.userid > 1

 AND q.starttime > '[starttime]'

GROUP BY 1,2

ORDER BY 1,2;

Here is the expected output:

queue | conc_scaled | queries | aborted | queue_secs | exec_secs

-------+-------------+---------+---------+------------+-----------

 9 | N | 75 | 0 | 3569.83 | 31.24

 9 | Y | 25 | 0 | 0.0 | 10.97

As can be noticed from the above output, Amazon Redshift was able to take advantage of

the concurrency scaling feature to run 25% of the queries on the burst data warehouse.

How it works…
Concurrency scaling in Amazon Redshift automatically and elastically scales query processing

power to handle peak workloads, ensuring fast performance and preventing query delays by

routing eligible queries to concurrency scaling clusters when a WLM queue’s concurrency exceeds

defined limits. You can find more details on the queries that are eligible for concurrency scaling
here: https://docs.aws.amazon.com/redshift/latest/dg/concurrency-scaling.html.

https://docs.aws.amazon.com/redshift/latest/dg/concurrency-scaling.html

Performance Optimization274

Optimizing Spectrum queries for provisioned
clusters
Amazon Redshift Spectrum allows you to extend your Amazon Redshift data warehouse to use

SQL queries on data that is stored in Amazon S3. Optimizing Amazon Redshift Spectrum queries

allows optimal throughputs for the SQL queries, as well as saving on the costs associated with

them. In this recipe, we will demonstrate techniques to get insights into the performance of

Spectrum-based queries and optimize them.

Getting ready
To complete this recipe, you will need:

• An IAM user with access to Amazon Redshift and Amazon S3

• An Amazon Redshift data warehouse deployed in the AWS Region eu-west-1

• Amazon Redshift data warehouse master user credentials

• Access to any SQL interface, such as a SQL client or Amazon Redshift Query Editor V2

• An IAM role attached to an Amazon Redshift data warehouse that can access Amazon S3;

we will refer to it in the recipes with [Your-Redshift_Role]

• An AWS account number; we will refer to it in the recipes with [Your-AWS_Account_Id]

How to do it…
In this recipe, we will use the Amazon.com customer product reviews dataset (refer to Chapter 3,

Loading data from Amazon S3 using COPY recipe) to demonstrate getting insights into Spectrum

SQL performance and tuning it:

1. Open any SQL client tool or Redshift Query Editor V2 and connect to Amazon Redshift.

Create a schema to point to the reviews dataset using the following command by replacing

the [Your-AWS_Account_Id] and [Your-Redshift_Role] values:

CREATE external SCHEMA reviews_ext_schema

FROM data catalog DATABASE 'reviews_ext_schema'

iam_role 'arn:aws:iam::[Your-AWS_Account_Id]:role/[Your-Redshift_

Role]'

CREATE external DATABASE if not exists;

Chapter 8 275

2. Using the reviews dataset, create the Parquet version of the external tables using the

command below:

CREATE external TABLE reviews_ext_schema.amazon_product_reviews_

parquet(

 marketplace varchar(2),

 customer_id varchar(32),

 review_id varchar(24),

 product_id varchar(24),

 product_parent varchar(32),

 product_title varchar(512),

 star_rating int,

 helpful_votes int,

 total_votes int,

 vine char(1),

 verified_purchase char(1),

 review_headline varchar(256),

 review_body varchar(max),

 review_date date,

 year int)

stored as parquet

location 's3://packt-redshift-cookbook/reviews_parquet/';

3. Using the reviews dataset, create the plain-text file (tab-delimited) version of the external
tables using the command below:

CREATE external TABLE reviews_ext_schema.amazon_product_reviews_tsv(

 marketplace varchar(2),

 customer_id varchar(32),

 review_id varchar(24),

 product_id varchar(24),

 product_parent varchar(32),

 product_title varchar(512),

 star_rating int,

 helpful_votes int,

 total_votes int,

 vine char(1),

 verified_purchase char(1),

 review_headline varchar(256),

Performance Optimization276

 review_body varchar(max),

 review_date date,

 year int)

row format delimited

fields terminated by '\t'

stored as textfile

location 's3://packt-redshift-cookbook/reviews_tsv/';

4. Run the following analytical queries to calibrate the throughputs and note down the

parquet_query_id and tsv_query_id outputs:

SELECT verified_purchase,

 SUM(total_votes) total_votes,

 avg(helpful_votes) avg_helpful_votes,

 count(customer_id) total_customers

FROM reviews_ext_schema.amazon_product_reviews_parquet

WHERE review_headline = 'Y'

GROUP BY verified_purchase;

select PG_LAST_QUERY_ID() as parquet_query_id;

SELECT verified_purchase,

 SUM(total_votes) total_votes,

 avg(helpful_votes) avg_helpful_votes,

 count(customer_id) total_customers

FROM reviews_ext_schema.amazon_product_reviews_tsv

WHERE review_headline = 'Y'

GROUP BY verified_purchase;

select PG_LAST_QUERY_ID() as tsv_query_id;

5. Analyze the performance of both of these queries using the following command by substi-

tuting [parquet_query_id] and [tsv_query_id] with the values from the previous step:

select query, segment, elapsed as elapsed_ms, s3_scanned_rows, s3_

scanned_bytes, s3query_returned_rows, s3query_returned_bytes, files

from svl_s3query_summary

where query in ([parquet_query_id], [tsv_query_id])

order by query,segment ;

Chapter 8 277

Here is the expected output:

query,elapsed_ms,s3_scanned_rows,s3_scanned_bytes,s3query_returned_

rows,s3query_returned_bytes,files

parquet_query_id 3000554 5906460 142428017 4 1917

10

tsv_query_id 9182604 5906460 2001945218 4 5222

10

As you can notice above, the TSV version of the datasets took 9 seconds, compared to

the 3 seconds it took in Parquet, since the TSV version had to scan 2 GB of data while the

Parquet format scanned 0.14 MB of data, despite the content of the files being the same.

Having the data in a columnar format such as Parquet improves the query throughput and reduces

the costs incurred with the query as the scan being carried out on the dataset is most optimal.

How it works…
Optimizing Amazon Redshift Spectrum queries works on the principle of reducing the Amazon

S3 scan and pushing down operations as much as possible into the scalable Spectrum engine.

This can be achieved by using the following techniques:

• Amazon Redshift Spectrum supports structured and semi-structured data formats such

as Avro, Parquet, ORC, file, JSON, etc., and using a columnar file format like Parquet or
ORC can reduce I/O by reading only the needed columns.

• Compress the row format file, e.g., textfile, with compression such as gzip, Snappy, or bzip
to save costs and allow faster performance.

• Use the optimal file size:

• Avoid excessive small files (<1 MB)

• Avoid large files (1 GB) if the file format is not splittable, e.g., gzip/Snappy com-

pressed text file

• Organize the files as partitions. Take advantage of partition pruning to save costs when

running the query.

You can read more about optimization techniques here: https://aws.amazon.com/blogs/big-

data/10-best-practices-for-amazon-redshift-spectrum/.

https://aws.amazon.com/blogs/big-data/10-best-practices-for-amazon-redshift-spectrum/
https://aws.amazon.com/blogs/big-data/10-best-practices-for-amazon-redshift-spectrum/

9
Cost Optimization

Amazon Redshift allows you to operate your data warehouse from a few gigabytes to a petabyte

in a way that is simple to manage and cost effective. The cost is predictable even with unpredict-

able workloads and provides up to 7x better price performance than any other data warehouse,

at just $1,000 per terabyte per year.

Amazon Redshift provides flexible pricing options, both on demand and reserved for provisioned
clusters. With Reserved Instance pricing, you save up to 63% by committing to a 1-year or 3-year

term. There are multiple cost controls you can choose from to manage your Redshift serverless

spend. There are several best practices you can follow to ensure you’re getting the best value with

Amazon Redshift. This chapter also discusses some of the common cost optimization methods

to get the best cost performance.

The following recipes will be covered in this chapter:

• AWS Trusted Advisor

• Amazon Redshift Reserved Instance pricing

• Scheduling pause and resume for an Amazon Redshift provisioned cluster

• Scheduling elastic resizing for an Amazon Redshift provisioned cluster

• Using cost controls to set actions for Spectrum

• Using cost controls to set actions for concurrency scaling for an Amazon provisioned cluster

• Using cost controls for Redshift serverless

Cost Optimization280

Technical requirements
Here are the technical requirements to complete the recipes in this chapter:

• Access to the AWS Console.

• An AWS administrator should create an IAM user by following Recipe 1 in the Appendix.

This IAM user will be used in some of the recipes in this chapter.

• The AWS administrator should deploy the AWS CloudFormation template at https://

github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter09/

chapter_9_CFN.yaml and create one IAM policy and one IAM role:

• An IAM policy attached to the IAM user that will give them access to Amazon

Redshift, AWS Secrets Manager, Amazon CloudWatch, Amazon CloudWatch Logs,

AWS KMS, AWS Glue, Amazon EC2, AWS Trusted Advisor, AWS Billing, AWS Cost

Explorer, and Amazon S3.

• An IAM role with the ability to schedule pause and resume, and elastic resizing

for a Redshift cluster. We will refer to this as Chapter9RedshiftSchedulerRole.

• An Amazon Redshift cluster deployed in the eu-west-1 AWS region.

AWS Trusted Advisor
AWS Trusted Advisor provides you with a summarized dashboard and detailed real-time guidance

to help you provision your resources following AWS best practices. Its checks help you to optimize

your AWS infrastructure, reduce your overall costs, and increase security and performance, and

it also monitors your service limit.

AWS Trusted Advisor provides cost optimization checks for unutilized Amazon Redshift clusters.

It also provides cost optimization checks for the on-demand Amazon Redshift clusters that can

benefit from Reserved Instance pricing, providing you with significant savings.

Getting ready
To complete this recipe, you will need:

• An IAM user with access to Amazon Redshift and AWS Trusted Advisor

• An Amazon Redshift cluster deployed in the eu-west-1 AWS region

https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter09/chapter_9_CFN.yaml
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter09/chapter_9_CFN.yaml
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter09/chapter_9_CFN.yaml

Chapter 9 281

How to do it…
In this recipe, we will use AWS Trusted Advisor to identify opportunities for potential savings:

1. Navigate to the AWS Management Console and select AWS Trusted Advisor. On the

dashboard, you will see a summary of the checks for cost optimization with potential

monthly savings:

Figure 9.1 – AWS Trusted Advisor Dashboard

2. To further drill down into the details of cost optimization, select Cost Optimization from

the left pane. If the Amazon Redshift clusters are underutilized, it will list the clusters

with the corresponding cost. You can choose to pause the clusters or delete the clusters

for savings on on-demand clusters:

Figure 9.2 – Cost optimization recommendations

Cost Optimization282

3. Cost optimization recommendation results in potential savings with Reserved Instances

for the on-demand cluster. This is based on the usage for the past 30 days:

Figure 9.3 – Amazon Redshift cost optimization opportunities

4. To view the potential cost savings, navigate to Cost Explorer from the Management Con-

sole. Choose Recommendations under Reservations. The recommendations are to use

Reserved Instances instead of on-demand, which would result in potential savings of 34%:

Figure 9.4 – Amazon Redshift cost optimization recommendation

We will dive deeper into the potential savings with Reserved Instance pricing in the next recipe.

How it works…
AWS Trusted Advisor is an application that infers best practices based on operational data derived

from thousands of AWS customers. These checks fall into categories such as cost optimization,

security, fault tolerance, performance, and service limits. For a full list of checks, visit https://

aws.amazon.com/premiumsupport/technology/trusted-advisor/best-practice-checklist/.

https://aws.amazon.com/premiumsupport/technology/trusted-advisor/best-practice-checklist/
https://aws.amazon.com/premiumsupport/technology/trusted-advisor/best-practice-checklist/

Chapter 9 283

Amazon Redshift Reserved Instance pricing
Amazon Redshift Reserved Instance pricing is a billing construct that results in significant savings
for on-demand provisioned clusters that are utilized 24x7. To get deep discounts on the cluster

for your data warehouse workload, you can reserve your instances. Once you have determined

the size and number of clusters for your workload, you can purchase Reserved Instances with

discounts from 30% to 63% compared to on-demand pricing.

Reserved Instances can be purchased using full upfront, partial upfront, or sometimes a no upfront

payment plan. Reserved Instances can be purchased for one or three years. Reserved Instances are

not tied to a particular cluster; they can be pooled across clusters in your account. The following

table shows the significant cost optimization you can get by using Reserved Instance pricing with
one year and three years for different instances for the upfront payment option:

Instance

type

Managed

storage limit per

node

Memory

(GB)
vCPUs

Reserved Instance

discount*

1-Year 3-Year

ra3.16xlarge 128 TB 384 48 34% 63%

ra3.4xlarge 128 TB 96 12 34% 63%

ra3.xlplus 32 TB 32 4 34% 62%

ra3.large 8 TB 16 2 34% 63%

Table 9.1 – Representative Reserved Instance savings

Please see https://aws.amazon.com/redshift/pricing/ for the latest pricing and savings.

In this recipe, we will use Cost Explorer to see the significant cost savings using Reserved Instances
for an existing on-demand cluster. Then, using the Amazon Redshift console, we will dive into

how to purchase the reserved nodes.

Getting ready
To complete this recipe, you will need:

• An IAM user with access to Amazon Redshift, AWS Billing, and AWS Cost Explorer

• An Amazon Redshift provisioned cluster deployed in the eu-west-1 AWS region

https://aws.amazon.com/redshift/pricing/

Cost Optimization284

How to do it…
1. Navigate to the AWS Management Console and select Cost Explorer.

2. On the left side, choose Recommendations under Reservation. By selecting a 1 year Re-

served Instance with All upfront, you get 34% savings compared to on-demand:

Figure 9.5 – AWS cost optimization recommendations

3. Now, let’s see the benefits of cost savings with three Reserved Instances. If we have three
years all upfront, we get a significant saving of 65% compared to on-demand pricing:

Figure 9.6 – AWS cost optimization benefits

Chapter 9 285

4. To purchase the reserved nodes, navigate to the Amazon Redshift console. Choose Clusters

and then select Reserved nodes:

Figure 9.7 – Purchasing Reserved Instances

5. Choose the instance types and the Reserved Instance term, 1 year or 3 years:

Figure 9.8 – Reserved Instance plans and savings

Cost Optimization286

6. Enter the number of nodes you need, check the acknowledgment checkbox, and select

Purchase reserved nodes. Once you have purchased the reserved nodes, your billing will

reflect the savings:

Figure 9.9 – Purchasing the Reserved Instance

See also...
Find out more about Reserved Instance pricing for Amazon Redshift here:

• https://docs.aws.amazon.com/redshift/latest/mgmt/purchase-reserved-node-

instance.html

• https://aws.amazon.com/redshift/pricing/

Scheduling pause and resume for Amazon Redshift
provisioned cluster
The customers generally have a set of development, test, and production workloads. While pro-

duction workloads need to be up and running 24/7, the same can’t be said for development and

test workloads. To make cost-conscious decisions, customers can use the pause and resume

feature within Amazon Redshift to only resume for the development and test clusters when they

are in use and pause when not in use. The customers can perform this action on-demand or even

schedule on a specific interval.

https://docs.aws.amazon.com/redshift/latest/mgmt/purchase-reserved-node-instance.html
https://docs.aws.amazon.com/redshift/latest/mgmt/purchase-reserved-node-instance.html
https://aws.amazon.com/redshift/pricing/

Chapter 9 287

In the recipe, we will learn how to pause and resume the Amazon Redshift cluster on a schedule.

Getting ready
To complete this recipe, you will need:

• An IAM user with access to Amazon Redshift

• An IAM role called Chapter8RedshiftSchedulerRole with the ability to schedule pause

and resume for Redshift clusters

• An Amazon Redshift provisioned cluster deployed in the eu-west-1 AWS region

How to do it…
1. Open the Amazon Redshift console: https://console.aws.amazon.com/redshiftv2/

home.

2. Select the cluster that you would like to pause, click on Actions, and select Pause, as

shown in the following screenshot:

Figure 9.10 – Select your cluster from the Amazon Redshift Console

3. In the Pause cluster window, you have multiple options:

• Resume now: This option allows you to perform resume operations on demand.

• Resume later: This option allows you to perform a resume operation at a partic-

ular date and time.

• Resume and pause on schedule: This option allows you to perform pause and

resume operations on a given schedule.

https://console.aws.amazon.com/redshiftv2/home
https://console.aws.amazon.com/redshiftv2/home

Cost Optimization288

4. We will review resuming the cluster by scheduling a pause and resume operation here.

We will select Pause and resume on schedule. Provide Schedule name and Description:

Figure 9.11 – Create a schedule for pause and resume

5. For the schedule, select the Starts on and Ends on dates that should be applied. In the

Editor, you can choose Week, Day, or Month for the pause and resume schedule:

Figure 9.12 – Pick the times to pause and resume

6. In the Scheduler permissions section, you will need to select the pre-created IAM role

from the dropdown that can perform the modify operation on the Redshift cluster and

can call the Redshift scheduler.

Chapter 9 289

Finally, click on the Schedule recurring pause and resume button to schedule the

operation:

Figure 9.13 – Associated permissions to perform pause and resume

How it works…
When you pause a cluster, a snapshot is created, queries are terminated, and the cluster enters

the paused state. From a pricing perspective, on-demand billing is suspended for that cluster, and

only storage incurs charges. When you resume the cluster, it creates a cluster from the snapshot

that was taken during the pause operation.

Scheduling elastic resizing for an Amazon Redshift
provisioned cluster
The analytics workload requirements for enterprises change over time, and resizing makes it

easy to scale the workload up or down and even change to newer instance classes with few clicks.

Elastic resize is a mechanism to add nodes, remove nodes, and change node types for an existing

Amazon Redshift cluster. In this recipe, we will cover how to schedule a resize operation based

on business requirements. For example, you might want to upsize your cluster before the start

of your scheduled ETL process to satisfy the SLA needs.

Note

Pause and resume operations can be can also be performed using the Redshift API

or SDK (https://docs.aws.amazon.com/redshift/latest/APIReference/

API_Operations.html). This allows you to automate your operational tasks easi-

ly. For example, you can pause your development/ test cluster when it’s not in use

during non-business hours.

https://docs.aws.amazon.com/redshift/latest/APIReference/API_Operations.html
https://docs.aws.amazon.com/redshift/latest/APIReference/API_Operations.html

Cost Optimization290

In this recipe, you will learn how conduct elastic resizing on a Redshift cluster using a schedule:

Getting ready
To complete this recipe, you will need:

• An IAM user with access to Amazon Redshift

• An IAM role called Chapter9RedshiftSchedulerRole with the ability to schedule elastic

resize for a Redshift cluster

• An Amazon Redshift provisioned cluster deployed in the eu-west-1 AWS region

How to do it…
1. Open the Amazon Redshift console: https://console.aws.amazon.com/redshiftv2/

home.

2. Select the cluster, click Actions, and select Resize:

Figure 9.14 – Cluster management for resizing

3. Under Resize Cluster, keep the default selection for Elastic resize (recommended).

4. Under Schedule resize, the options are Resize the cluster now, Schedule resize at a later

time, and Schedule recurring resize events. For a resize based on a recurring event, we

will select Schedule recurring resize events to repeat upsize/downsize operations based

on a schedule:

Figure 9.15 – Creating a recurring resize event

https://console.aws.amazon.com/redshiftv2/home
https://console.aws.amazon.com/redshiftv2/home

Chapter 9 291

5. Under Scheduling options, enter the name for the schedule under Schedule name and

enter the dates when this schedule needs to start and stop in the Starts on and Ends on

fields. You can now select when and how the cluster configuration needs to change by
selecting Node type, Number of nodes, and Increase size every.

For instance, we want to scale the workload up to 4 nodes on every last Monday of the

month to manage the end-of-month reporting workload and scale it back down to 2

nodes at the start of the month.

Figure 9.16 – Creating an elastic resize (upsize and downsize) schedule

Cost Optimization292

6. In the Scheduler permissions section, select the pre-created IAM role from the drop-

down that can perform the resize operation on the Redshift cluster and can call the Red-

shift scheduler. Finally, click on the Schedule resize button to schedule the elastic resize

operation.

For instance, we are selecting the IAM role from the dropdown called Chapter9RedshiftS-

chedulerRole, which was pre-created with correct access:

Figure 9.17 – Selecting the IAM role for scheduling the elastic resize

7. Validate that the resize operation has been created, click on your cluster from the main

CLUSTER option, and select the Schedule tab. In the Resize schedule section, you will

have the resize operations listed.

Figure 9.18 – Validate the elastic resize schedule

How it works…
An elastic resize takes around 10-15 mins to complete, and during this time the cluster is in read-on-

ly mode. When changing just the node count but keeping the node type the same, the data is

redistributed at the backend, queries are temporarily paused, and connections are held open.

When changing the node type, the operation creates a new cluster from a snapshot, and open

connections will be terminated.

Chapter 9 293

Using cost controls to set actions for Redshift
Spectrum
Amazon Redshift allows you to extend your data warehouse to the data lake by performing SQL

queries directly on data on Amazon S3. You will be charged based on the number of bytes scanned

by Redshift Spectrum, rounded up to the next MB, with a 10 MB minimum per query (https://

aws.amazon.com/redshift/pricing/#Redshift_Spectrum_pricing). There are no charges for

Data Definition Language (DDL) statements like CREATE/ALTER/DROP TABLE statements for

managing partitions and failed queries.

In the recipe, we will set up cost controls on the Amazon Redshift spectrum usage to prevent any

accidental scan by a monstrous query.

Getting ready
To complete this recipe, you will need:

• An IAM user with access to Amazon Redshift

• An Amazon Redshift cluster deployed in the eu-west-1 AWS region

How to do it…
1. Navigate to the AWS Amazon Redshift console and navigate to Amazon Redshift | Clusters

and click on your Amazon Redshift cluster. Click on the Properties tab and scroll down

to the Database configurations, as shown in the following screenshot:

Figure 9.19 – Selecting the parameter group associated with the Amazon Redshift

cluster

https://aws.amazon.com/redshift/pricing/#Redshift_Spectrum_pricing
https://aws.amazon.com/redshift/pricing/#Redshift_Spectrum_pricing

Cost Optimization294

2. Click on the Parameter group associated with the cluster. Click on the edit workload queues

and click on Add custom rule, as shown in the following screenshot:

Figure 9.20 – Modifying workload queues

3. Choose a rule name (any user-friendly name) and click on the Predicates dropdown to

select Spectrum scan (MB). Choose values > 100,000,000 and set Actions to abort, as

shown in the following screenshot, and click on Save:

Figure 9.21 – Adding a custom query monitoring rule for Spectrum

Note

You cannot edit the default parameter groups and will have to create a cus-

tom parameter group to edit the queues and monitoring rules associated

with your cluster.

Chapter 9 295

Amazon Redshift will now abort any query that scans data over 100 TB, and you will not

be charged for any queries that were aborted. This prevents any user from accidentally

scanning a large amount of data for your data warehouse.

4. You will now create cost controls at the Amazon Redshift cluster level. Navigate to Amazon

Redshift | Clusters | Actions | Manage usage limit.

5. Click on Add limit and set a limit corresponding to Redshift Spectrum usage limit, as

shown in the following screenshot:

Figure 9.22 – Configuring limits and action for Spectrum

6. For Time period, select Monthly and set Usage Limit (TB) to 1000 and click on Save

changes:

Figure 9.23 – Setting up monthly limits for Spectrum usage

Cost Optimization296

The Amazon Redshift Spectrum feature is disabled when the monthly limit of 1,000 TB

of data scanned is exceeded.

See also…
For a step-by-step guide to setting up the workload management, refer to the Configuring Work-

load Management (WLM) for provisioned cluster recipe in Chapter 8.

Using cost controls to set actions for concurrency
scaling for an Amazon provisioned cluster
Amazon Redshift offers a feature called concurrency scaling that automatically adds temporary

clusters when your system needs to handle multiple user queries at once. Every day that your

main Redshift cluster is running, you earn one hour of free credits to use these temporary clusters,

though these credits expire at the end of each month. If you need more capacity beyond your free

credits, you’ll only be charged when the temporary clusters are actively processing queries. The

billing is calculated per second at the on-demand rate, with a minimum charge of one minute

each time a temporary cluster is activated. This way, you only pay for the extra processing power

when you actually need it, making it a cost-effective solution for handling periodic spikes in que-

ry volume. In the recipe, we will set up controls for concurrency scaling usage on your Amazon

Redshift cluster.

Getting ready
To complete this recipe, you will need:

• An IAM user with access to Amazon Redshift

• An Amazon Redshift cluster deployed in the eu-west-1 AWS region

How to do it…
1. Navigate to Amazon Redshift | Clusters | Actions | Manage usage limit.

2. Click on Add limit and set a limit corresponding to Concurrent scaling usage limit, as

shown in the following screenshot:

Chapter 9 297

Figure 9.24 – Configuring limits and actions for Spectrum

3. For Time period, select Monthly, for and Usage Limit (hh:mm), set 30 and click on Save

changes:

Figure 9.25 – Setting up monthly limits for concurrency scaling usage

Now, the Amazon Redshift concurrency scaling feature is disabled when the monthly

limit exceeds 30 hours.

Cost Optimization298

In addition to disabling concurrency scaling when limits are exceeded in your cluster, you can also

limit the number of concurrent clusters that are spun up using the max_concurrency_scaling_

clusters parameter we saw in Chapter 8.

See also…
Concurrency scaling pricing: https://aws.amazon.com/redshift/pricing/#Concurrency_

Scaling_pricing

Using cost controls for Redshift Serverless
Redshift Serverless automatically adjusts capacity based on the workload demand when there

is a query running against it and it shuts down when it’s not in use. The workload is charged on

a per-second basis (with a 60 seconds minimum charge). There are three crucial settings, Base

Capacity, Max RPU-hours, and Max RPU, to fine-tune your Redshift serverless cost efficiency
while maintaining performance.

In this recipe, you will learn how to have cost controls when using the Amazon Redshift Serverless

to prevent any surprises by adjusting Base Capacity, Max RPU-hours, and MaxRPU.

Getting ready
To complete this recipe, you will need:

• An IAM user with access to Amazon Redshift

• Amazon Redshift Serverless cluster deployed in the eu-west-1 AWS region

How to do it…
1. Navigate to Amazon Redshift | Serverless dashboard and click on your workgroup.

2. Go to the Performance tab and select Edit for Performance and cost controls.

https://aws.amazon.com/redshift/pricing/#Concurrency_Scaling_pricing
https://aws.amazon.com/redshift/pricing/#Concurrency_Scaling_pricing

Chapter 9 299

3. Under Performance and cost controls, you can manually select the Base capacity from

the dropdown ranging from 8 to 512. Click on Save changes to confirm the selection:

Figure 9.26 – Setting up base capacity

Now, the base capacity for the Amazon Redshift Serverless cluster is configured at 8 RPUs,
which means when the workgroup starts it defaults at 8 RPUs before scaling up for ad-

ditional demand as needed.

Cost Optimization300

4. Optionally, you can select Price-performance target, where Redshift automatically ap-

plies AI-driven optimization to meet your target, ranging from 1 for cost optimization to

100 for performance optimization. This feature works best when the system has learned

the specific workload pattern and when the base RPU is between 32 and 512. Click on Save

changes to confirm the selection:

Figure 9.27 – Setting up the price-performance target

The price-performance target value of 1 indicates that Amazon Redshift’s AI-driven scaling

is configured to prioritize cost optimization. At this setting, the system will make scaling
decisions that emphasize cost efficiency over maximum performance, helping to balance
workload requirements with cost management

Chapter 9 301

5. To set the MaxRPU (which will cap the maximum RPU Serverless will scale up to), browse

to Limits tab and select Edit for Max Capacity.

6. In the Edit max capacity section, set the Max capacity ranging from 8 to 5632 in incre-

ments of 8. Click on Save changes to confirm the selection:

Figure 9.28 – Setting up max capacity

7. Now, the max capacity for the Amazon Redshift Serverless cluster is configured at 400,
which means when the workgroup will not scale beyond 400 RPUs. To set the Max RPU

hours (the budget cap for potential spending), browse to the Limits tab and select Man-

age usage limits.

8. In the Manage usage limits section, under Maximum Redshift processing units (RPU),

select Add limit.

9. In the Compute usage limits section, you have the option to set the frequency to daily,

weekly, or hourly. You can also select the Usage limit (RPU hours).

Cost Optimization302

10. Under Action, you can select from different options, from tracking by logging to system

tables to turning off user queries if you have hard budget limits. You have the option to

configure up to 4 limits.

Figure 9.29 – Setting up usage limits

Now, the maximum number of hours the RPUs will operate is 1000 beyond which no user

queries will run on the workgroup.

How it works…
The following settings allow us to build cost controls for the Redshift Serverless environment:

• Base Capacity: This is your cost foundation. By setting the Base RPUs, you’re essentially

choosing your minimum ongoing cost. While a higher base can improve performance for

data-intensive tasks, it also means a higher fixed cost. The key here is to find the sweet
spot where you’re not overpaying for unused capacity during quiet periods but still have

enough power for your regular workload.

Chapter 9 303

• Max RPU-hours: This is your cost ceiling. By specifying Max RPU-hours over daily, week-

ly, or monthly periods, you’re putting a hard limit on your potential spending. It’s like

setting a budget cap – Amazon Redshift will take automatic actions to ensure you don’t

exceed this limit. This feature is crucial for maintaining predictable costs, especially if

your workload can be variable or if you’re working within a strict budget.

• MaxRPU (Max Capacity): This acts as your cost safeguard against unexpected spikes.

While automatic scaling can help handle sudden increases in demand, unrestricted scaling

could lead to unexpectedly high costs. The MaxRPU setting prevents this by capping the

maximum resources your warehouse can scale up to, even during peak periods.

10
Lakehouse Architecture

Lakehouse is an architectural pattern that makes data easily accessible across a customer’s ana-

lytics solutions, thereby preventing data silos. Amazon Redshift is the backbone of the lakehouse

architecture. It allows enterprise customers to query data across the data lake, operational da-

tabase, and multiple data warehouses to build an analytics solution without having to move

data in and out of these different systems. The key benefits of a lakehouse include unified data
management (no need to maintain separate copies of data), consistent security and governance

across all data, and the ability to use multiple query engines and tools to access the same data.

AWS’s implementation specifically allows customers to use different storage options (S3 buckets,
S3 tables, or Redshift managed storage (RMS)) while providing access through standard Iceberg

APIs, making the data accessible to both AWS services and third-party tools without requiring

data migration or copies.

In this chapter, you will learn how you can leverage the lakehouse architecture to extend a data

warehouse to services outside Amazon Redshift to build your solution, while taking advantage

of the built-in integration.

The following recipes are discussed in this chapter:

• Building a data lake catalog using AWS Lake Formation

• Carrying out a data lake export from Amazon Redshift

• Extending a data warehouse using Amazon Redshift Spectrum

• Querying an operational source using a federated query

• Amazon SageMaker Lakehouse

Lakehouse Architecture306

Technical requirements
Here are the technical requirements to complete the recipes in this chapter:

• Access to the AWS Management Console.

• AWS administrator permission to create an IAM user by following Recipe 1 in Appendix.

This IAM user will be used for some of the recipes in this chapter.

• AWS administrator permission to create an IAM role by following Recipe 3 in Appendix.

This IAM role will be used for some of the recipes in this chapter.

• AWS administrator permission to deploy an AWS CloudFormation template (https://

github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter10/

chapter_10_CFN.yaml) to create two IAM policies:

• An IAM policy attached to the IAM user that will give them access to Amazon

Redshift, Amazon EC2, Amazon S3, Amazon SNS, Amazon CloudWatch, Amazon

CloudWatch Logs, AWS KMS, AWS IAM, AWS CloudFormation, AWS CloudTrail,

Amazon RDS, AWS Lake Formation, AWS Secrets Manager, and AWS Glue

• An IAM policy attached to the IAM role that will allow an Amazon Redshift data

warehouse to access Amazon S3, Amazon RDS, and AWS Glue

• Attach an IAM role to the Amazon Redshift data warehouse by following Recipe 4 in Ap-

pendix. Make note of the IAM role name; we will refer to it in the recipes with [Your-

Redshift_Role].

• AWS administrator permission to run the CLI commands using AWS Cloud Shell (https://

github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter10/

Chapter10_DataTransferRoleAndLakeFormation). This will create DataTransferRole

and configure AWS LakeFormation settings.

• An Amazon Redshift data warehouse deployed in the AWS Region eu-west-1.

• Amazon Redshift data warehouse admin user credentials.

• Access to any SQL interface such as a SQL client or Amazon Redshift Query Editor.

• An AWS account number; we will refer to it in the recipes with [Your-AWS_Account_Id].

• An Amazon S3 bucket created in eu-west-1; we will refer to it with [Your-Amazon_S3_

Bucket].

• The code files can be found in the Git repo: https://github.com/PacktPublishing/
Amazon-Redshift-Cookbook-2E/tree/main/Chapter10.

https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter10/chapter_10_CFN.yaml
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter10/chapter_10_CFN.yaml
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter10/chapter_10_CFN.yaml
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter10/Chapter10_DataTransferRoleAndLakeFormation
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter10/Chapter10_DataTransferRoleAndLakeFormation
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter10/Chapter10_DataTransferRoleAndLakeFormation
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/tree/main/Chapter10
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/tree/main/Chapter10

Chapter 10 307

Building a data lake catalog using AWS Lake
Formation
The data lake design pattern has been widely adopted by the industry. Data lakes help to break

data silos, by allowing you to store all of your data in a single, unified place. You can collect the
data from different sources. Data can arrive at different frequencies, for example, clickstream

data. The data format can be structured, unstructured, or semi-structured. Analyzing a unified
view of data allows you to derive more value and insight from the data to drive business value.

Your data lake should be secure and meet your compliance requirements. It should include a

comprehensive, searchable index of all the data stored in the lake. This catalog makes it easy

for users to locate and access the specific data they need. One of the advantages of data lakes is
that you can run a variety of analytic tools against it. It also allows you to carry out new types

of analysis on your data. For example, you may want to move from answering questions about

what happened in the past to focusing on real-time insights and using statistical models and

forecasting techniques to understand and answer what could happen in the future. To do this,

you need to incorporate machine learning (ML), big data processing, and real-time analytics.

The pattern that allows you to integrate your analytics with a data lake is the lakehouse archi-

tecture. Amazon S3 object stores are used for centralized data lakes due to their scalability, high

availability, and durability.

Figure 10.1 – Lakehouse architecture

Lakehouse Architecture308

Typical challenges and steps involved in building a data lake include the following:

• Identifying sources and defining the frequency with which the data lake needs to be
hydrated

• Cleaning and cataloging the data

• Centralizing the configuration and application of security policies

• Integrating the data lake with analytical services that adhere to the centralized security

policies

The following is a representation of the lakehouse workflow moving data from raw format to
ready for analytics:

Figure 10.2 – Data workflow using the lakehouse architecture

The AWS Lake Formation service allows you to simplify the build, centralize the management,

and configure security policies. AWS Lake Formation leverages AWS Glue for cataloging, data
ingestion, and data transformation.

In this recipe, you will learn how to use Lake Formation to hydrate a data lake from a relational

database, catalog the data, and apply security policies.

Getting ready
To complete this recipe, you will need the following setup:

• An IAM user with access to Amazon RDS, Amazon S3, and AWS Lake Formation.

• An Amazon RDS MySQL database; create an RDS MySQL cluster: https://aws.amazon.

com/getting-started/hands-on/create-mysql-db/.

In this recipe, the version of MySQL engine is 5�7�44.

• A command line to connect to RDS MySQL: https://docs.aws.amazon.com/AmazonRDS/

latest/UserGuide/USER_ConnectToInstance.html.

https://aws.amazon.com/getting-started/hands-on/create-mysql-db/
https://aws.amazon.com/getting-started/hands-on/create-mysql-db/
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ConnectToInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_ConnectToInstance.html

Chapter 10 309

• This recipe uses the AWS EC2 Linux instance with the MySQL command line. Open the

security group for the RDS MySQL database to allow connectivity from your client.

How to do it…
In this recipe, we will learn how to set up a data flow with a MySQL-based transactional database
to be cataloged using a Lake Formation catalog and query it easily using an Amazon Redshift data

warehouse (serverless or provisioned cluster):

1. Let’s connect to a RDS MySQL database using the following command line. Enter the

password and it will connect you to the database:

mysql -h [yourMySQLRDSEndPoint] -u admin -p

2. We will create an ods database in MySQL and create a parts table in the ods database:

create database ods;

CREATE TABLE ods.part

(

 P_PARTKEY BIGINT NOT NULL,

 P_NAME VARCHAR(55),

 P_MFGR VARCHAR(25),

 P_BRAND VARCHAR(10),

 P_TYPE VARCHAR(25),

 P_SIZE INTEGER,

 P_CONTAINER VARCHAR(10),

 P_RETAILPRICE DECIMAL(18,4),

 P_COMMENT VARCHAR(23)

);

3. On your client server, download the file part.tbl from https://github.com/

PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter10/part.tbl

to your local disk.

4. Now we will load this file into the ods.part table on a MySQL database. This will load

100 records into the parts table:

LOAD DATA LOCAL INFILE 'part.tbl'

 INTO TABLE ods.part

 FIELDS TERMINATED BY '|'

 LINES TERMINATED BY '\n';

https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter10/part.tbl
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter10/part.tbl

Lakehouse Architecture310

5. Let’s verify the count of records loaded into the ods.part table:

MySQL [(none)]> select count(*) from ods.part;

+----------+

| count(*) |

+----------+

| 100 |

+----------+

1 row in set (0.00 sec)

6. Navigate to AWS Lake Formation and select Get started.

Figure 10.3 – Navigate to Lake Formation

7. Now, let’s set up the data lake location. Select Register location.

Figure 10.4 – Data lake setup

8. Enter the location of an S3 bucket or folder in your account. If you do not have one, create

a bucket in S3 in your account. Keep the default IAM role and click on Register location.

With this, Lake Formation will manage the data lake location.

Chapter 10 311

Figure 10.5 – Register the Amazon S3 location in the data lake

9. Next, we will create a database, which will serve as the catalog for the data in the data

lake. Click on Create database, as shown:

Figure 10.6 – Create a database in Lake Formation

Lakehouse Architecture312

10. Use cookbook-data-lake as the database name. For Catalog, select the default catalog,

which is named with your account number. Select the s3 path that you registered in AWS

Lake Formation. Select the checkbox Use only IAM access control for new tables in this

database. Click on Create database.

Figure 10.7 – Configure the Lake Formation database

11. Now we will hydrate the data lake using MySQL as the source. From the left menu, select

Blueprint, then click on Use blueprint.

12. Select Database snapshot and then click on Create a connection in AWS Glue. It will open

in a new tab:

Chapter 10 313

Figure 10.8 – Use a blueprint to create a database snapshot-based workflow

13. Choose JDBC and click Next. Set the following properties, as shown in the following

screenshot:

• JDBC URL: jdbc:mysql://<your-mysql-instance-endpoint>:3306/ods.

• Your username and password.

• For Network options, specify the VPC, subnet, and security group from your RDS

MySQL instance. You can find this information on the RDS console for your in-

stance under the Connectivity and Security tab.

• Select Next.

• For the name of the connection, enter datalake-mysql.

Lakehouse Architecture314

Figure 10.9 – Configure Amazon RDS connection properties

14. Select the connection datalake-mysql. Choose Action and select TestConnection. For the

IAM role, use AWSGlueServiceRole-cookbook. Select TestConnection. It will take a few

minutes for the test to run. When it is successful, it will show the connected successfully

to your instance message. If you run into issues with the connection setup, you can refer

to the following URL:

https://aws.amazon.com/premiumsupport/knowledge-center/glue-test-

connection-failed/

https://aws.amazon.com/premiumsupport/knowledge-center/glue-test-connection-failed/
https://aws.amazon.com/premiumsupport/knowledge-center/glue-test-connection-failed/

Chapter 10 315

The successful connection message looks as follows:

Figure 10.10 – Verify successful connection to the MySQL database

15. In AWS Lake Formation, set the following properties under Import source:

• For Database connection, from the dropdown, select datalake-mysql

• For Source data path, enter ods/part

Figure 10.11 – Use a blueprint to create a database snapshot-based workflow

Lakehouse Architecture316

16. Under Import target, for Target database, select cookbook-data-lake. For Target storage

location, specify your bucket path with mysql as the folder. We will unload the data from

mysql in Parquet format.

Figure 10.12 – Set up the target for the data workflow

17. Under Import frequency, select Run on demand.

Figure 10.13 – Configure the import frequency for the workflow

Chapter 10 317

18. Under Import options, specify the name of the workflow as hydrate-mysql. Under IAM

role, use AWSGlueServiceRole-FooGlue. For Table prefix, use mysql. Select Create.

Figure 10.14 – Configure import options for the workflow

19. On creation of the workflow, select Workflow. Select Action and start the workflow:

a. The workflow will crawl the mysql table metadata, which will catalog it in the

cookbook-data-lake database.

b. It will then unload the data from the mysql ods.part table in Parquet format into

the S3 location you provided.

Lakehouse Architecture318

c. Finally, it will crawl the Parquet data in S3 and create a table in the cookbook-

data-lake database.

Figure 10.15 – Crawl the target S3 Parquet bucket

20. To view the status of the workflow, click on runid. Then, select View graph.

Figure 10.16 – Visualize the data workflow

21. You can view the workflow steps and the corresponding status of the steps.

Figure 10.17 – Data workflow steps

Chapter 10 319

22. On successful completion of the workflow, Last run status will be marked as COMPLETED.

Figure 10.18 – Data workflow execution status

23. Let’s now view the details of your first data lake. To view the tables created in your cat-

alog, in the AWS Lake Formation console, from the left, select Databases. Select cook-

book-data-lake.

24. Select View tables.

Figure 10.19 – View tables created for the target

Lakehouse Architecture320

25. Note that the blueprint cataloged the tables.

Figure 10.20 – Verify the target dataset

26. To view the metadata of the unloaded Parquet data, select the mysql_ods_part table. This

table contains the metadata of the data. The crawler identified the column names and
the corresponding data types.

Figure 10.21 – View metadata for the target

Chapter 10 321

27. The classification is PARQUET and the table points to the location in S3 where the

data resides.

Figure 10.22 – Verify the target table format

28. To view the unloaded files on S3, navigate to your S3 location.

Figure 10.23 – Verify the underlying Parquet files in Amazon S3

Lakehouse Architecture322

29. Going back to AWS Lake Formation, let’s see how the permissions can be managed. In

this step, we will use the mysql_ods_part table. Select the mysql_ods_part table, select

Action, and select Grant:

Figure 10.24 – Set up permission for the target dataset

30. AWS Lake Formation enables you to centralize the process of configuring access permission
to the IAM roles. Table-level and fine-grained access at the column level can be granted
and controlled in a centralized place.

Chapter 10 323

Figure 10.25 – Administer the Lake Formation catalog

Later in the chapter, in the Extending a data warehouse using Redshift Spectrum recipe, you will learn

how to query this data using Amazon Redshift.

Lakehouse Architecture324

How it works…
AWS Lake Formation simplifies the management and configuration of a data lake by providing
a centralized place for doing so. AWS Glue’s extract, transform, load functionality, leveraging

Python and the Spark shell, as well as ML transform, enables you to customize workflows to
meet your needs. The AWS Glue/Lake Formation catalog integrates with Amazon Redshift for

your data warehousing, Amazon Athena for ad hoc analysis, Amazon SageMaker for predictive

analysis, and Amazon EMR for big data processing.

Carrying out a data lake export from Amazon
Redshift
Amazon Redshift allows the use of the lakehouse architecture, enabling you to query data within a

data warehouse or a data lake using Amazon Redshift Spectrum and also export your data back to

the data lake on Amazon S3, to be used by other analytical and ML services. You can store data in

open file formats in your Amazon S3 data lake when performing the data lake export to integrate
with your existing data lake formats.

Getting ready
To complete this recipe, you will need the following setup:

• An IAM user with access to Amazon Redshift

• An Amazon Redshift data warehouse deployed in the AWS Region eu-west-1 with the retail

dataset created in Chapter 3, using the recipe Loading data from Amazon S3 using COPY

• Amazon Redshift data warehouse admin user credentials

• Access to any SQL interface, such as a SQL client or Amazon Redshift Query Editor

• An AWS account number; we will refer to it in the recipes with [Your-AWS_Account_Id]

• An Amazon S3 bucket created in eu-west-1; we will refer to it with [Your-Amazon_S3_

Bucket]

• An IAM role attached to an Amazon Redshift data warehouse that can access Amazon S3;

we will refer to it in the recipes with [Your-Redshift_Role]

How to do it…
In this recipe, we will use the sample dataset created in Chapter 3, using the recipe Loading data

from Amazon S3 using COPY to write the data back to an Amazon S3 data lake:

1. Connect to the Amazon Redshift data warehouse using a client tool such as SQL Workbench.

Chapter 10 325

2. Execute the following analytical query to verify the sample dataset:

SELECT c_mktsegment,

 COUNT(o_orderkey) AS orders_count,

 SUM(l_quantity) AS quantity,

 COUNT(DISTINCT P_PARTKEY) AS parts_count,

 COUNT(DISTINCT L_SUPPKEY) AS supplier_count,

 COUNT(DISTINCT o_custkey) AS customer_count

FROM lineitem

 JOIN orders ON l_orderkey = o_orderkey

 JOIN customer c ON o_custkey = c_custkey

 JOIN dwdate

 ON d_date = l_commitdate

 AND d_year = 1992

 JOIN part ON P_PARTKEY = l_PARTKEY

 JOIN supplier ON L_SUPPKEY = S_SUPPKEY

GROUP BY c_mktsegment limit 5;

Here’s the expected sample output:

c_mktsegment | orders_count | quantity | parts_count | supplier_

count | customer_count

--------------+--------------+--------------+-------------+---------

-------+----------------

 MACHINERY | 82647 | 2107972.0000 | 75046 |

72439 | 67404

 AUTOMOBILE | 82692 | 2109248.0000 | 75039 |

72345 | 67306

 HOUSEHOLD | 82521 | 2112594.0000 | 74879 |

72322 | 67035

 BUILDING | 83140 | 2115677.0000 | 75357 |

72740 | 67411

 FURNITURE | 83405 | 2129150.0000 | 75759 |

73048 | 67876

3. Create a schema to point to the data lake using the following command, replacing [Your-

AWS_Account_Id] and [Your-Redshift_Role] with the relevant values:

CREATE external SCHEMA datalake_ext_schema

FROM data catalog DATABASE 'datalake_ext_schema'

Lakehouse Architecture326

iam_role 'arn:aws:iam::[Your-AWS_Account_Id]:role/[Your-Redshift_

Role] '

CREATE external DATABASE if not exists;

4. Create the external table that will be used to export the dataset:

CREATE external TABLE datalake_ext_schema.order_summary

 (c_mktsegment VARCHAR(10),

 orders_count BIGINT,

 quantity numeric(38,4),

 parts_count BIGINT,

 supplier_count BIGINT,

 customer_count BIGINT

)

STORED

AS

PARQUET LOCATION

's3://[Your-Amazon_S3_Bucket]/order_summary/';

5. Use the results of the above analytical query to export the data into the external table,

which will be stored in Parquet format in Amazon S3. Use the following command:

INSERT INTO datalake_ext_schema.order_summary

SELECT c_mktsegment,

 COUNT(o_orderkey) AS orders_count,

 SUM(l_quantity) AS quantity,

 COUNT(DISTINCT P_PARTKEY) AS parts_count,

 COUNT(DISTINCT L_SUPPKEY) AS supplier_count,

 COUNT(DISTINCT o_custkey) AS customer_count

FROM lineitem

 JOIN orders ON l_orderkey = o_orderkey

 JOIN customer c ON o_custkey = c_custkey

 JOIN dwdate

Note

You can specify the output data format as PARQUET. You can use any of the supported

data formats, listed here: https://docs.aws.amazon.com/redshift/latest/

dg/c-spectrum-data-files.html.

https://docs.aws.amazon.com/redshift/latest/dg/c-spectrum-data-files.html
https://docs.aws.amazon.com/redshift/latest/dg/c-spectrum-data-files.html

Chapter 10 327

 ON d_date = l_commitdate

 AND d_year = 1992

 JOIN part ON P_PARTKEY = l_PARTKEY

 JOIN supplier ON L_SUPPKEY = S_SUPPKEY

GROUP BY c_mktsegment;

6. You can now verify the results of the export using the following command:

select * from datalake_ext_schema.order_summary limit 5;

Here’s the expected sample output:

c_mktsegment | orders_count | quantity | parts_count | supplier_

count | customer_count

--------------+--------------+--------------+-------------+---------

-------+----------------

 HOUSEHOLD | 82521 | 2112594.0000 | 74879 |

72322 | 67035

 MACHINERY | 82647 | 2107972.0000 | 75046 |

72439 | 67404

 FURNITURE | 83405 | 2129150.0000 | 75759 |

73048 | 67876

 BUILDING | 83140 | 2115677.0000 | 75357 |

72740 | 67411

 AUTOMOBILE | 82692 | 2109248.0000 | 75039 |

72345 | 67306

7. Inspect the Amazon S3 location s3://[Your-Amazon_S3_Bucket]/order_summary/ for

the presence of Parquet files, as shown below:

$ aws s3 ls s3://[Your-Amazon_S3_Bucket]/order_summary/

-- expected sample output--

2021-03-02 00:00:11 1588 20210302_000002_331241_25860550_00

02_part_00.parquet

2021-03-02 00:00:11 1628 20210302_000002_331241_25860550_00

13_part_00.parquet

2021-03-02 00:00:11 1581 20210302_000002_331241_25860550_00

16_part_00.parquet

2021-03-02 00:00:11 1581 20210302_000002_331241_25860550_00

20_part_00.parquet

Lakehouse Architecture328

The previous sample output shows a list of all the Parquet files in the external table.

Extending a data warehouse using Amazon Redshift
Spectrum
Amazon Redshift Spectrum empowers Amazon Redshift customers to directly query data from

Amazon S3. This capability enables the seamless integration of data warehouse data with a data

lake, leveraging open-source file formats such as Parquet, CSV, Sequence, Avro, and more. Fur-

thermore, it allows querying data in open table formats like Apache Iceberg and Hudi. As a server-

less solution, Amazon Redshift Spectrum relieves customers of the burden of provisioning or

managing infrastructure. It enables unified analytics on data residing in both Amazon Redshift
data warehouses and Amazon S3 data lakes, facilitating the effortless creation of insights from

disparate datasets.

Getting ready
To complete this recipe, you will need the following setup:

• An IAM user with access to Amazon Redshift

• An Amazon Redshift data warehouse deployed in the AWS Region eu-west-1 with the retail

dataset created from Chapter 3, using the recipe Loading data from Amazon S3 using COPY

• Amazon Redshift data warehouse admin user credentials

• Access to any SQL interface, such as a SQL client or Amazon Redshift Query Editor

• An AWS account number; we will refer to it in the recipes with [Your-AWS_Account_Id]

• An Amazon S3 bucket created in eu-west-1; we will refer to it with [Your-Amazon_S3_

Bucket]

• An IAM role attached to an Amazon Redshift data warehouse that can access Amazon S3

and AWS Glue; we will refer to it in the recipes with [Your-Redshift_Role]

How to do it…
In this recipe, we will create an external table in an external schema and query data directly from

Amazon S3 using Amazon Redshift:

1. Connect to the Amazon Redshift data warehouse using a client tool such as SQL

Workbench.

Chapter 10 329

2. Execute the following query to create an external schema, replacing [Your-AWS_Account_

Id] and [Your-Redshift_Role] with the respective values:

create external schema packt_spectrum

from data catalog

database 'packtspectrumdb'

iam_role 'arn:aws:iam::[Your-AWS_Account_Id]:role/[Your-Redshift_

Role]'

create external database if not exists;

3. Execute the following command to copy data from the Packt S3 bucket (s3://packt-

redshift-cookbook/) to your S3 bucket by replacing [Your-Amazon_S3_Bucket] with

the respective value in the following command:

aws cp s3://packt-redshift-cookbook/spectrum/sales s3://[Your-

Amazon_S3_Bucket]/spectrum/sales --recursive

4. Execute the following query to create an external table, replacing [Your-Amazon_S3_

Bucket] with the respective value:

create external table packt_spectrum.sales(

salesid integer,

listid integer,

sellerid integer,

buyerid integer,

eventid integer,

dateid smallint,

qtysold smallint,

pricepaid decimal(8,2),

commission decimal(8,2),

saletime timestamp)

row format delimited

fields terminated by '\t'

stored as textfile

location 's3://[Your-Amazon_S3_Bucket]/spectrum/sales/'

table properties ('numRows'='172000');

5. Execute the following command to query data in S3 directly from Amazon Redshift:

select count(*) from packt_spectrum.sales;

Lakehouse Architecture330

--

expected sample output –

count

172462

6. Execute the following command to create a table locally in Amazon Redshift:

create table packt_event(

eventid integer not null distkey,

venueid smallint not null,

catid smallint not null,

dateid smallint not null sortkey,

eventname varchar(200),

starttime timestamp);

7. Execute the following command to load data in the event table, replacing [Your-AWS_

Account_Id] and [Your-Redshift_Role] with the respective values:

copy packt_event from 's3://packt-redshift-cookbook/spectrum/event/

allevents_pipe.txt'

iam_role 'arn:aws:iam::[Your-AWS_Account_Id]:role/[Your-Redshift_

Role]

delimiter '|' timeformat 'YYYY-MM-DD HH:MI:SS' region 'us-east-1';

8. Execute the following query to join the data across a Redshift local table and a Spectrum

table:

SELECT top 10 packt_spectrum.sales.eventid,

 SUM(packt_spectrum.sales.pricepaid)

FROM packt_spectrum.sales,

 packt_event

WHERE packt_spectrum.sales.eventid = packt_event.eventid

AND packt_spectrum.sales.pricepaid > 30

GROUP BY packt_spectrum.sales.eventid

ORDER BY 2 DESC;

--

expected sample output--

eventid | sum

Chapter 10 331

--------+---------

 289 | 51846.00

 7895 | 51049.00

 1602 | 50301.00

 851 | 49956.00

 7315 | 49823.00

 6471 | 47997.00

 2118 | 47863.00

 984 | 46780.00

 7851 | 46661.00

 5638 | 46280.00

Now, Amazon Redshift is able to join the external and the local tables to produce the desired results.

Querying an operational source using a federated
query
Amazon Redshift federated queries enable unified analytics across databases, data warehouses,
and data lakes. With the federated query feature in Amazon Redshift, you can query live data

across Amazon RDS and Aurora PostgreSQL databases. For example, you might have up-to-date

customer address data that you want to join with the historical orders data to enrich your reports.

This can be easily done using the federated query feature.

Getting ready
To complete this recipe, you will need:

• An IAM user with access to Amazon Redshift, AWS Secrets Manager, and Amazon RDS.

• An Amazon Redshift data warehouse deployed in the AWS Region eu-west-1 with the

retail sample data from Chapter 3.

• An Amazon Aurora serverless PostgreSQL database. Create an RDS PostgreSQL cluster

using this guide: https://aws.amazon.com/getting-started/hands-on/building-

serverless-applications-with-amazon-aurora-serverless/. Launch this in the same

VPC as your Amazon Redshift data warehouse.

• Access to any SQL interface, such as a SQL client or Amazon Redshift Query Editor

• An IAM role attached to an Amazon Redshift data warehouse that can access Amazon

RDS; we will refer to it in the recipes with [Your-Redshift_Role].

• An AWS account number; we will refer to it in the recipes with [Your-AWS_Account_Id].

https://aws.amazon.com/getting-started/hands-on/building-serverless-applications-with-amazon-aurora-serverless/
https://aws.amazon.com/getting-started/hands-on/building-serverless-applications-with-amazon-aurora-serverless/

Lakehouse Architecture332

How to do it…
In this recipe, we will use an Amazon Aurora serverless PostgreSQL database as the operational

data store to federate with Amazon Redshift:

1. Let’s connect to an Aurora PostgreSQL database using Query Editor. Navigate to the Am-

azon RDS landing page and select Query Editor.

2. Choose the RDS instance from the dropdown. Enter the username and password. For the

database name, enter postgres and then select Connect to database.

Figure 10.26 – Configure an Amazon Aurora PostgreSQL database

3. Copy and paste the SQL script available at https://github.com/PacktPublishing/

Amazon-Redshift-Cookbook-2E/blob/main/Chapter10/aurora_postgresql_orders_

insert.sql into the editor. Select Run.

https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter10/aurora_postgresql_orders_insert.sql
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter10/aurora_postgresql_orders_insert.sql
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter10/aurora_postgresql_orders_insert.sql

Chapter 10 333

Figure 10.27 – Create the orders tables

4. We will now create an Aurora PostgreSQL database secret using AWS Secrets Manager to

store the user ID and password.

5. Navigate to the AWS Secrets Manager console. Select Store a new secret.

6. Select Credentials for RDS database, then enter the username and password. Select your

database instance and click Next.

Figure 10.28 – Set up credentials for RDS

Lakehouse Architecture334

7. Enter the name aurora-pg/RedshiftCookbook for the secret. Select Next.

Figure 10.29 – Create the Aurora PostgreSQL secret

8. Select Next, keep the defaults, and click Store.

9. Select the newly created secret and copy the ARN of the secret.

Figure 10.30 – Copy the ARN for the secret

10. To configure Amazon Redshift to federate with the Aurora PostgreSQL database, we need
to attach an inline policy to the IAM role attached to our Amazon Redshift data warehouse

to provide access to the secret created in the preceding steps. To do this, navigate to the

IAM console and select Roles.

Chapter 10 335

11. Search for the role. Add the following inline policy. Replace [Your-AWS_Account_Id] with

your AWS account number:

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Sid": "AccessSecret",

 "Effect": "Allow",

 "Action": [

 "secretsmanager:GetResourcePolicy",

 "secretsmanager:GetSecretValue",

 "secretsmanager:DescribeSecret",

 "secretsmanager:ListSecretVersionIds"

],

 "Resource": "arn:aws:secretsmanager:us-east-1:[Your-AWS_

Account_Id]:secret:aurora-pg/RedshiftCookbook"

 },

 {

 "Sid": "VisualEditor1",

 "Effect": "Allow",

 "Action": [

 "secretsmanager:GetRandomPassword",

 "secretsmanager:ListSecrets"

],

 "Resource": "*"

 }

]

}

12. Let’s set up Amazon Redshift to federate to an Aurora PostgreSQL database to query the

orders operational data. For this, connect to your Amazon Redshift data warehouse using

a SQL client or Query Editor from the Amazon Redshift console.

Lakehouse Architecture336

13. Create the external schema ext_postgres on Amazon Redshift. Replace

[AuroraClusterEndpoint] with the endpoint of the instance from your account for the

Aurora PostgreSQL database. Replace [Your-AWS_Account_Id] and [Your-Redshift-

Role] with the respective values. Also, replace [AuroraPostgreSQLSecretsManagerARN]

with the value of the secret ARN from Step 9:

DROP SCHEMA IF EXISTS ext_postgres;

CREATE EXTERNAL SCHEMA ext_postgres

FROM POSTGRES

DATABASE 'postgres'

URI '[AuroraClusterEndpoint]'

IAM_ROLE 'arn:aws:iam::[Your-AWS_Account_Id]:role/[Your-Redshift-

Role]'

SECRET_ARN '[AuroraPostgreSQLSecretsManagerARN]';

14. To list the external schemas, execute the following query:

select *

from svv_external_schemas;

15. To list the external schema tables, execute the following query

select *

from svv_external_tables

where schemaname = 'ext_postgres';

16. To validate the configuration and the setup of the federated query from Amazon Redshift,
let’s execute the count query for the orders table in the Aurora PostgreSQL database:

select count(*) from ext_postgres.orders;

Here’s the expected output:

1000

17. With a federated query, you can join an external table with an Amazon Redshift local table:

SELECT O_ORDERSTATUS,

 COUNT(o_orderkey) AS orders_count

FROM ext_postgres.orders

 JOIN dwdate

Chapter 10 337

 ON d_date = O_ORDERDATE

 AND d_year = 1992

GROUP BY O_ORDERSTATUS;

Here’s the expected output:

o_orderstatus orders_count

F 1000

18. You can also create a materialized view using a federated query. The results of a materi-

alized view query, typically stored virtually in a view, will be stored as a physical table

on Amazon Redshift. You can refresh the materialized view to get more fresh data from

your ODS:

create materialized view public.live_orders as

SELECT O_ORDERSTATUS,

 COUNT(o_orderkey) AS orders_count

FROM ext_postgres.orders

 JOIN dwdate

 ON d_date = O_ORDERDATE

 AND d_year = 1992

GROUP BY O_ORDERSTATUS;

As observed, the materialized view can federate between Aurora PostgreSQL and Amazon Redshift.

Amazon SageMaker Lakehouse
Amazon SageMaker Lakehouse unifies all your data across Amazon S3 data lakes and Amazon
Redshift data warehouses, helping you build powerful analytics and AI/ML applications on a

single copy of data. SageMaker Lakehouse gives you the flexibility to access and query your data
in place with all Apache Iceberg-compatible tools and engines. You can secure your data in the

lakehouse by defining fine-grained permissions that are enforced across all analytics and ML tools
and engines. You can bring data from operational databases and applications into your lakehouse

in near-real time through zero-ETL integrations.

Lakehouse Architecture338

Additionally, you can access and query data in place with federated query capabilities across

third-party data sources.

Figure 10.31 – Amazon SageMaker Lakehouse

Amazon SageMaker Lakehouse is accessible from the AWS Management Console via the Unified
Studio, using APIs, the AWS CLI, or AWS SDKs. Data from different sources is organized into

logical containers called catalogs in SageMaker Lakehouse. Each catalog represents data either

from existing data sources, such as Amazon Redshift data warehouses, data lakes, or databases,

or new catalogs, which can be directly created in the lakehouse to store data in Amazon S3 or

Amazon RMS. Data in SageMaker Lakehouse can be accessed from Apache Iceberg-compatible

engines such as Apache Spark, Athena, or Amazon EMR. Additionally, these catalogs can be dis-

covered as databases in Amazon Redshift data warehouses, allowing you to use your SQL tools

to analyze your lakehouse data.

In this recipe, we will register an Amazon Redshift data warehouse as a federated source and

query data using Amazon Redshift and Amazon Athena.

Chapter 10 339

Getting ready
To complete this recipe, you will need the following:

• An IAM user with access to Amazon Redshift and Lake Formation with admin access.

• Two separate data warehouses, one with a two-node Amazon Redshift ra3.xlplus pro-

visioned cluster and one with Amazon Redshift Serverless deployed in the AWS Region

eu-west-1 in account1.

• Access to any SQL interface, such as a SQL client or Amazon Redshift Query Editor V2.

• Add AWSServiceRoleForRedshift as a read-only data lake admin role in AWS Lake Formation.

How to do it…
In the recipe, we will use an Amazon Redshift RA3 provisioned cluster:

1. Connect to the Amazon Redshift provisioned cluster using a client tool such as SQL Work-

bench or Query Editor V2.

2. Run the following SQL to create sales and marketing schemas and tables:

create schema sales;

create schema marketing;

-- Create Marketing Campaigns Table

CREATE TABLE marketing.marketing_campaigns (

 campaign_id VARCHAR(20) PRIMARY KEY,

 campaign_name VARCHAR(100),

 campaign_type VARCHAR(50),

 channel VARCHAR(50),

 start_date DATE,

 end_date DATE,

 budget DECIMAL(12,2),

 target_audience VARCHAR(100),

 status VARCHAR(20)

);

-- Create Sales Transactions Table

CREATE TABLE sales.sales_transactions (

 transaction_id VARCHAR(20) PRIMARY KEY,

 campaign_id VARCHAR(20),

 customer_id VARCHAR(20),

 transaction_date TIMESTAMP,

Lakehouse Architecture340

 product_id VARCHAR(20),

 quantity INTEGER,

 unit_price DECIMAL(10,2),

 total_amount DECIMAL(12,2),

 region VARCHAR(50),

 source VARCHAR(50)

);

-- Insert sample data for Marketing Campaigns

INSERT INTO marketing.marketing_campaigns VALUES

('CAM001', 'Summer Sale 2024', 'Seasonal', 'Email', '2024-06-01',

'2024-06-30', 50000.00, 'All Customers', 'Active'),

('CAM002', 'Social Media Push', 'Digital', 'Social Media', '2024-05-

15', '2024-07-15', 75000.00, 'Young Adults', 'Active'),

('CAM003', 'Holiday Special', 'Seasonal', 'Multi-channel', '2024-12-

01', '2024-12-31', 100000.00, 'All Customers', 'Planned');

-- Insert sample data for Sales Transactions

INSERT INTO sales.sales_transactions VALUES

('T001', 'CAM001', 'CUST001', '2024-06-01 10:30:00', 'PROD001', 2,

99.99, 199.98, 'North', 'Email'),

('T002', 'CAM002', 'CUST002', '2024-06-01 11:45:00', 'PROD002', 1,

149.99, 149.99, 'South', 'Email'),

('T003', 'CAM003', 'CUST003', '2024-05-15 14:20:00', 'PROD003', 3,

79.99, 239.97, 'West', 'Instagram');

3. Navigate to the Redshift console and choose Provisioned clusters dashboard from the

left-hand navigation panel.

4. Choose the provisioned cluster. Select Actions. Select Register with AWS Glue Data

Catalog. Click Register. This will register the metadata of databases and schemas with

AWS Glue Data Catalog as the federated catalog.

Figure 10.32 – Register an Amazon Redshift data warehouse

Chapter 10 341

5. Navigate to the AWS Lake Formation console using the LF Admin role. You will see an

invitation.

Figure 10.33 – AWS Lake Formation catalog invitation

6. Select the invitation. Click Approve and create catalog.

7. Under Catalog details, use sales_marketing as the name.

Figure 10.34 – Catalog details specifying the name

8. Enable the checkbox Access this catalog from Apache Iceberg compatible engines.

9. Under IAM role, choose DataTransferRole. Click Next.

Figure 10.35 – Catalog configuration to allow other Apache Iceberg engines access

Lakehouse Architecture342

10. Click Add permissions. Choose IAM users and roles. Select the chapter_10 role. Under

Catalog permissions, select the Super user permission:

Figure 10.36 – Catalog IAM principal access settings

11. Click Next. Select Create catalog.

12. Under Catalog, select dev. You will see databases listing Redshift schemas. AWS Glue

Data Catalog supports a hierarchy of registered sources.

Figure 10.37 – Catalog listing databases

Chapter 10 343

13. Choose Marketing. Select View and choose Tables.

Figure 10.38 – Catalog listing tables

14. Once your Redshift data warehouse is registered, all data warehouses in that account and

Region will see Glue Data Catalogs auto-mounted as data shares.

15. Navigate to Query Editor V2 using the chapter_10 role and log on to Redshift Serverless

using a federated role.

16. Browse the external databases and you will see datashare dev@sales_marketing.

Figure 10.39 – Amazon Redshift consumer Query Editor V2 listing data shared schemas

17. Select the database dev@sales_marketing in Query Editor. Run the following analytical

query.

SELECT

 mc.campaign_name,

 mc.channel,

 COUNT(st.transaction_id) as total_transactions,

 SUM(st.total_amount) as total_revenue,

 SUM(st.total_amount)/COUNT(st.transaction_id) as avg_

transaction_value

FROM

 marketing.marketing_campaigns mc

 LEFT JOIN sales.sales_transactions st ON mc.campaign_id =

st.campaign_id

GROUP BY

Lakehouse Architecture344

 mc.campaign_name,

 mc.channel

ORDER BY

 total_revenue DESC;

Figure 10.40 – Amazon Redshift Query Editor V2 query results

18. The Redshift data warehouse is registered to AWS Glue Data Catalog as an Apache Ice-

berg-compatible table. Glue Data Catalog supports the Apache Iceberg REST catalog API.

This allows a registered Redshift federated catalog to be queried by engines that support

Apache Iceberg libraries.

19. Navigate to the Amazon Athena console using the chapter_10 role.

20. Select Editor. Select sales_marketing/dev as the catalog. You will see the sales and mar-

keting schemas. Choose marketing.

Figure 10.41 – Amazon Athena editor listing Redshift federated catalog databases

Chapter 10 345

21. Let’s run the following analytical query:

SELECT

 mc.campaign_name,

 mc.channel,

 COUNT(st.transaction_id) as total_transactions,

 SUM(st.total_amount) as total_revenue,

 SUM(st.total_amount)/COUNT(st.transaction_id) as avg_

transaction_value

FROM

 marketing.marketing_campaigns mc

 LEFT JOIN sales.sales_transactions st ON mc.campaign_id =

st.campaign_id

GROUP BY

 mc.campaign_name,

 mc.channel

ORDER BY

 total_revenue DESC;

Figure 10.42 – Analytical query

Lakehouse Architecture346

How it works…
Amazon SageMaker Lakehouse uses AWS Glue Data Catalog as its unified technical catalog. AWS
Lake Formation manages security and access control for this catalog. Both federated and managed

data tables are registered using the Apache Iceberg table format for compatibility.

AWS Glue Data Catalog supports Apache Iceberg’s REST catalog API, enabling interoperability

with AWS analytics services, open-source Spark, and third-party engines that support Apache

Iceberg libraries.

Figure 10.43 – Amazon SageMaker Lakehouse

11
Data Sharing with Amazon
Redshift

Amazon Redshift’s decoupled architecture to separate storage from compute provides the capa-

bility to share data. Data sharing allows Redshift data warehouses to securely share data with

other Redshift data warehouses, within the same AWS account, across different AWS accounts,

and across different AWS Regions. This data-sharing capability provides a live, transactionally

consistent view of the data without the need to move or copy the data physically.

Here are the key benefits of Redshift data sharing:

1. Workload isolation: Redshift data sharing allows you to isolate workloads across differ-

ent teams or business units, ensuring that one team’s queries or data processing doesn’t

impact the performance of another team’s workload.

2. Clear chargeback: With data sharing, you can clearly identify and charge back the costs

associated with data access and usage to the appropriate teams or business units.

3. Cross-collaboration: Data sharing enables cross-team and cross-organizational collab-

oration by making datasets easily accessible to authorized users, fostering data-driven

decision-making across the enterprise.

4. Scalable read and write access: Redshift data sharing allows you to scale read and write

access to data, enabling multiple teams to access and work with the same datasets con-

currently without the need to create duplicate copies.

5. Monetize data as a service: Organizations can leverage Redshift data sharing to mon-

etize their data by offering it as a service to external customers or partners, generating

additional revenue streams.

Data Sharing with Amazon Redshift348

Common data-sharing deployment patterns are hub and spoke and data mesh, which allow you

to implement multi-warehouse architecture:

• Hub and spoke: Using the hub-and-spoke architecture, you bring your data into one or

more central warehouses that are generally used to write all the data. You then share your

data with consumer warehouses that can read and write data. This pattern is also used

for data as a service to share data with external customers.

• Data mesh: Using a data mesh architecture, different business groups can seamlessly

share and collaborate on data. A common use case is enabling teams to collaborate on live

datasets quickly and easily. For example, in this diagram, sales, marketing, and finance
are all collaborating on a common customer 360 model.

Figure 11.1 – Data-sharing patterns

The following recipes are covered in this chapter:

• Data sharing read access across multiple Amazon Redshift data warehouses

• Data sharing write access across multiple Amazon Redshift data warehouses

• Data sharing using Amazon DataZone for cross-collaboration and self-service analytics

• Data sharing using AWS Data Exchange for monetization and subscribing to third-party

data

Chapter 11 349

Technical requirements
Here are the technical requirements in order to complete the recipes in this chapter:

• Access to the AWS Management Console.

• AWS administrator permission to create an IAM user by following Recipe 1 in Appendix.

This IAM user will be used in some of the recipes in this chapter.

• AWS administrator permission to create an IAM role by following Recipe 3 in Appendix.

This IAM role will be used in some of the recipes in this chapter.

• AWS administrator permission to deploy the AWS CloudFormation template at https://

github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter11/

chapter_11_CFN.yaml. This creates:

a. An IAM policy attached to the IAM user that will give them access to Amazon Red-

shift, Amazon S3, AWS KMS, AWS IAM, AWS CloudFormation, AWS CloudTrail,

AWS Lake Formation, AWS Secrets Manager, AWS SageMaker, and AWS Glue

b. An IAM policy attached to the IAM role that will allow an Amazon Redshift cluster

to access Amazon S3, AWS Lake Formation, and AWS Glue

• An Amazon Redshift data warehouse (serverless or provisioned) deployed in the AWS

Region eu-west-1 in an AWS account.

• Amazon Redshift data warehouse master user credentials.

• Attach an IAM role to the Amazon Redshift cluster by following Recipe 4 in Appendix. Make

a note of the IAM role name; we will refer to it in the recipes with [Your-Redshift_Role].

• Access to any SQL interface such as a SQL client or Amazon Redshift Query Editor V2.

• An AWS Region; we will refer to it in the recipes with [Your-AWS_Region].

• An AWS account number; we will refer to it in the recipes with [Your-AWS_Account].

• An Amazon S3 bucket created in eu-west-1; we will refer to it with [Your-Amazon_S3_

Bucket].

• The code files can be found in the Git repo: https://github.com/PacktPublishing/
Amazon-Redshift-Cookbook-2E/tree/master/Chapter11.

https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter11/chapter_11_CFN.yaml
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter11/chapter_11_CFN.yaml
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter11/chapter_11_CFN.yaml
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/tree/master/Chapter11
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/tree/master/Chapter11

Data Sharing with Amazon Redshift350

Data sharing read access across multiple Amazon
Redshift data warehouses
Amazon Redshift RA3 and Amazon Redshift serverless architecture decouple storage and compute.

Decoupled architecture provides the ability to scale compute independently to meet workload

SLAs and only pay for storage that is consumed. The decoupled storage allows data to be read

and written by different consumer data warehouses. This allows for workload isolation. The

data producer data warehouse controls access to the data that is shared. This feature opens up

the possibility of setting up a flexible multi-tenant architecture; for example, within an orga-

nization, data produced by a business unit can be shared with any of the different teams, such

as marketing, finance, data science, etc., that can be independently consumed using their own
Amazon Redshift clusters.

In this recipe, we will use a producer Amazon Redshift RA3 provisioned cluster, with a sample

dataset that will be shared with the consumer serverless endpoint.

Getting ready
To complete this recipe, you will need the following:

• An IAM user with access to Amazon Redshift.

• Two separate data warehouses, one with a two-node Amazon Redshift ra3.xlplus pro-

visioned cluster and one that is Amazon Redshift serverless deployed in the AWS Region

eu-west-1 in account1.

The first provisioned cluster should be deployed with the retail sample data from Chapter03

(https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/

Chapter03/Ssb_Table_Ddl.sql). This cluster will be called the producer Amazon Redshift

provisioned cluster where data will be shared from (outbound). Note down the namespace

of this cluster, which can be found by running the command SELECT current_namespace.

Let’s say this cluster namespace value is [Your_Redshift_Producer_Namespace].

The second serverless endpoint can be an empty data warehouse. This data warehouse

will be called the consumer Amazon Redshift data warehouse from where data will be

consumed (inbound). Note down the namespace of this data warehouse, which can be

found by running the command SELECT current_namespace. Let’s say this data ware-

house namespace value is [Your_Redshift_Consumer_Namespace].

• Access to any SQL interface, such as a SQL client or Amazon Redshift Query Editor V2.

https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter03/Ssb_Table_Ddl.sql
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter03/Ssb_Table_Ddl.sql

Chapter 11 351

How to do it…
1. Connect to the Amazon Redshift producer provisioned cluster using a client tool such as

SQL Workbench or Query Editor V2.

2. Execute the following analytical query to verify the sample dataset:

SELECT DATE_TRUNC('month',l_shipdate),

 SUM(l_quantity) AS quantity

FROM lineitem

WHERE l_shipdate BETWEEN '1992-01-01' AND '1992-06-30'

GROUP BY DATE_TRUNC('month',l_shipdate);

--Sample output dataset

 date_trunc | quantity

---------------------+----------------

 1992-05-01 00:00:00 | 196639390.0000

 1992-06-01 00:00:00 | 190360957.0000

 1992-03-01 00:00:00 | 122122161.0000

 1992-02-01 00:00:00 | 68482319.0000

 1992-04-01 00:00:00 | 166017166.0000

 1992-01-01 00:00:00 | 24426745.0000

3. Create a data share and add the lineitem table so that it can be shared with the consumer

serverless endpoint using the following command, replacing [Your_Redshift_Consumer_

Namespace] with consumer cluster namespace:

CREATE DATASHARE SSBDataShare;

ALTER DATASHARE SSBDataShare ADD TABLE lineitem;

GRANT USAGE ON DATASHARE SSBDataShare TO NAMESPACE ' [Your_Redshift_

Consumer_Namespace]';

4. Execute the following command to verify that data sharing is available:

SHOW DATASHARES;

Here’s the expected output:

owner_account,owner_namespace,sharename,shareowner,share_

type,createdate,publicaccess

123456789012,redshift-cluster-data-share-1,ssbdatashare,100,outbou

nd,2021-02-26 19:03:16.0,false

Data Sharing with Amazon Redshift352

5. Connect to the Amazon Redshift consumer serverless endpoint using a client tool such

as SQL Workbench or Amazon Redshift Query Editor V2. Run the following command:

DESC DATASHARE ssbdatashare OF NAMESPACE [Your_Redshift_Producer_

Namespace];

Here’s the expected output:

producer_account | producer_namespace | share_

type | share_name | object_type | object_name

-------------------+--------------------------------------+---------

---+------------+-------------+---------------------------------

 123456789012 | [Your_Redshift_Producer_Namespace]| INBOUND

| ssbdatashare | table | public.lineitem

6. Create local databases that reference the data shares using the following command:

CREATE DATABASE ssb_db FROM DATASHARE ssbdatashare OF NAMESPACE

[Your_Redshift_Producer_Namespace];

7. Create an external schema that references the data shares database, ssb_db, by executing

the following:

CREATE EXTERNAL SCHEMA ssb_schema FROM REDSHIFT DATABASE 'ssb_db'

SCHEMA 'public';

8. Verify the data share access for the linetime table using full qualification, as follows:

SELECT DATE_TRUNC('month',l_shipdate),

 SUM(l_quantity) AS quantity

FROM ssb_db.public.lineitem

WHERE l_shipdate BETWEEN '1992-01-01' AND '1992-06-30'

GROUP BY DATE_TRUNC('month',l_shipdate);

Here’s the sample dataset:

 date_trunc | quantity

---------------------+----------------

 1992-05-01 00:00:00 | 196639390.0000

 1992-06-01 00:00:00 | 190360957.0000

 1992-03-01 00:00:00 | 122122161.0000

 1992-02-01 00:00:00 | 68482319.0000

Chapter 11 353

 1992-04-01 00:00:00 | 166017166.0000

 1992-01-01 00:00:00 | 24426745.0000

As you will notice, in the preceding step, the data that is shared by the producer provisioned

cluster is available for querying in the consumer serverless endpoint.

How it works…
With Amazon Redshift, you can share data at different levels. These levels include databases, sche-

mas, tables, views (including regular, late-binding, and materialized views), data lake tables, and

SQL user-defined functions (UDFs). You can create multiple data shares for a given database. A

data share can contain objects from multiple schemas in the database on which sharing is created.

By having this flexibility in sharing data, you get fine-grained access control. You can tailor this
control for different users and businesses that need access to Amazon Redshift data. Amazon

Redshift provides transactional consistency on all producer and consumer clusters and shares

up-to-date and consistent views of the data with all consumers. You can also use SVV_DATASHARES,

SVV_DATASHARE_CONSUMERS, and SVV_DATASHARE_OBJECTS to view the data shares, the objects

within the data share, and the data share consumers.

See also...
For more details on cross-account data sharing across AWS accounts, refer to https://docs.aws.

amazon.com/redshift/latest/dg/across-account.html.

For more details on data sharing across Regions, refer to https://docs.aws.amazon.com/

redshift/latest/dg/across-region.html.

Data sharing write access across multiple Amazon
Redshift data warehouses
In this recipe, we will use a producer Amazon Redshift RA3 provisioned cluster, with the sample

dataset to be shared with the consumes serverless endpoint. The serverless endpoint will write

to the data share. We will also cover granular access control on a data share.

Getting ready
To complete this recipe, you will need the following:

• An IAM user with access to Amazon Redshift.

https://docs.aws.amazon.com/redshift/latest/dg/across-account.html
https://docs.aws.amazon.com/redshift/latest/dg/across-account.html
https://docs.aws.amazon.com/redshift/latest/dg/across-region.html
https://docs.aws.amazon.com/redshift/latest/dg/across-region.html

Data Sharing with Amazon Redshift354

• Two separate data warehouses, one with a two-node Amazon Redshift ra3.xlplus pro-

visioned cluster and Amazon Redshift serverless deployed in the AWS Region eu-west-1

in account1.

The first provisioned cluster will be called the producer Amazon Redshift provisioned

cluster, where data will be shared from (outbound). Note down the namespace of this

cluster, which can be found by running the command SELECT current_namespace. Let’s

say this cluster namespace value is [Your_Redshift_Producer_Namespace].

The second serverless endpoint can be an empty data warehouse. This data warehouse will

be called the consumer Amazon Redshift data warehouse, where data will be consumed

from (inbound). Note down the namespace of this data warehouse, which can be found

by running the command SELECT current_namespace. Let’s say this data warehouse

namespace value is [Your_Redshift_Consumer_Namespace].

• Access to any SQL interface, such as a SQL client or Amazon Redshift Query Editor V2.

How to do it…
1. Connect to the Amazon Redshift producer provisioned cluster using a client tool such as

SQL Workbench or Query Editor V2.

2. Run the following command to create a table:

CREATE TABLE credit_risk_score (

 customer_id VARCHAR(20) NOT NULL,

 risk_score INTEGER NOT NULL,

 assessment_date DATE NOT NULL DEFAULT GETDATE(),

 risk_category VARCHAR(10) NOT NULL

);

3. Create a data share and add the credit_risk_score table along with permission to select

and insert into table:

CREATE DATASHARE riskscore_ds;

GRANT USAGE ON SCHEMA public TO DATASHARE riskscore_ds;

GRANT SELECT ON TABLE public.credit_risk_score TO DATASHARE

riskscore_ds;

Chapter 11 355

GRANT INSERT ON TABLE public.credit_risk_score TO DATASHARE

riskscore_ds;

-- You can optionally choose to include new objects to be

automatically shared

ALTER DATASHARE riskscore_ds SET INCLUDENEW = TRUE FOR SCHEMA

public;

4. To grant usage on the data share to the serverless consumer namespace, run the following

command:

GRANT USAGE ON DATASHARE riskscore_ds TO namespace '[Your_Redshift_

Consumer_Namespace]';

5. Log on to the serverless namespace and create a database from the data share using WITH

permissions:

CREATE DATABASE riskscore_db WITH PERMISSIONS FROM DATASHARE

riskscore_ds OF NAMESPACE '[Your_Redshift_Producer_Namespace]';

6. Let’s query and write to the data share using the use command:

use riskscore_db;

--The first select will return zero records

select * from public.credit_risk_score;

INSERT INTO public.credit_risk_score (customer_id, risk_score,

assessment_date, risk_category)

VALUES ('CUST001', 720, sysdate,'Low');

select * from public.credit_risk_score;

How it works…
With Amazon Redshift, you can write through data shares. You can grant usage, create, select,

insert, and update access to data share objects. On the consumer side, you can grant permissions

to data share objects for consumer users and roles. Data sharing enables you to scale your read and

write workloads. The producer is the owner of the objects. When the consumer writes through,

the data share commit is handled by the producer.

Data Sharing with Amazon Redshift356

Data sharing using Amazon DataZone for cross-
collaboration and self-service analytics
Amazon DataZone can be effectively utilized to enhance governance for Redshift producers and

consumers. It provides a centralized platform for data discovery, access management, and collab-

oration. For producers, DataZone allows you to catalog your Redshift datasets, add rich business

metadata using generative AI, and define access policies, ensuring that data is properly docu-

mented and secured. Consumers can easily search for and request access to relevant Redshift data

through DataZone’s user-friendly interface. The platform’s built-in approval workflows and fine-
grained access controls help maintain compliance and data security. Additionally, DataZone’s data

lineage features allow both producers and consumers to track data origins and transformations

within Redshift, promoting transparency and trust. By implementing DataZone, organizations

can streamline their Redshift data governance processes, fostering a culture of responsible data

use while maximizing the value of their data assets.

Getting ready
To complete this recipe, you will need the following:

• An IAM user with access to Amazon Redshift.

• Two Amazon Redshift serverless endpoints, named sales-wg and marketing-wg.

• Create a sales tables and load data on your Amazon Redshift serverless sales-wg us-

ing Query Editor V2 with the following script: https://github.com/PacktPublishing/

Amazon-Redshift-Cookbook-2E/blob/main/Chapter11/sales_data.sql.

• AWSDataExchangeSubscriberFullAccess IAM permission associated with your IAM user/

role.

• AWS administrator permission to deploy the AWS CloudFormation template to create an

Amazon DataZone domain and two projects, SalesPublisher and MarketingConsumer.

Name the stack cookbook-chapter11-datazone (https://github.com/PacktPublishing/

Amazon-Redshift-Cookbook-2E/blob/main/Chapter11/datazone_domain_CFN.yaml).

How to do it…
In this recipe, we will use Amazon Data Zone as the business catalog for sales data in a Redshift

serverless and subscribe to this data with an approval workflow:

1. Navigate to the AWS CloudFormation landing page. Select the completed stack cook-

book-chapter11-datazone.

https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter11/sales_data.sql
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter11/sales_data.sql
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter11/datazone_domain_CFN.yaml
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter11/datazone_domain_CFN.yaml

Chapter 11 357

2. Make note of all key-value pairs. We will reference them in this recipe.

Figure 11.2 – DataZone CloudFormation outputs

3. Next, we will set up AWS Secrets Manager for Amazon Redshift serverless sales-wg. Nav-

igate to the AWS Secrets Manager console.

4. Choose store a new secret. Select Credentials for Amazon Redshift data warehouse. Enter

User name and Password. Select your serverless sales-wg and choose Next.

Figure 11.3 – AWS Secrets Manager for sales-wg

5. Enter a name for the secret, such as AmazonDataZone-saleswgsecrets. Add the tags

AmazonDataZoneDomain and AmazonDataZoneProject with the values you captured for

the keys datazonedomainid and datazonePublisherProjectId from the CloudFormation

stack output in Step 1.

Data Sharing with Amazon Redshift358

Click Next and choose store:

Figure 11.4 – AWS Secrets Manager for sales-wg with tags

6. Repeat Step 3 and Step 4 to create a secret for the marketing-wg serverless endpoint. Name

this secret AmazonDataZone-marketingwgsecrets. Add the tags AmazonDataZoneDomain

and AmazonDataZoneProject with the values you captured for the keys datazonedomainid

and datazoneConsumerProjectId from the CloudFormation stack output in Step 1.

Figure 11.5 – AWS Secrets Manager for marketing-wg with tags

Chapter 11 359

7. Let’s now navigate to an Amazon SageMaker domain. Select the domain cookbookChapter11.

8. We will now configure the blueprint. A blueprint allows us to configure the resources
you want to bring to projects. Select the Blueprint tab. Choose Default Data Warehouse.

Figure 11.6 – DataZone domain blueprints

9. Let’s create a parameter set to allow Amazon DataZone to connect to the sales-wg server-

less workgroup. Choose Parameter Set and select Create parameter set. Enter the name

sales-redshift-serverless:

Figure 11.7 – Create parameter set

Data Sharing with Amazon Redshift360

10. Select the Region your serverless endpoint is in. Choose Amazon Redshift Serverless. For

AWS Secret, it will present you with a dropdown. Select your secret. It will populate with

an ARN. Next, select your Redshift Serverless workgroup name. Enter the name of the

database you loaded sales data in. Select Create parameter set.

Figure 11.8 – Parameter set for sales-wg

11. Repeat steps 8 and 9 to create a parameter set for marketing-wg. Name the parameter set

marketing-redshift-serverless.

12. Let’s now set up environment profiles. Predefined templates called environment profiles
encapsulate technical details such as AWS account, Region, and required resources and

tools needed to create an environment for projects. Navigate to the domain and select

the portal URL.

Figure 11.9 – DataZone domain portal

Chapter 11 361

13. It will ask you whether you want to create projects. You can skip this step, as we already

have projects created using a CloudFormation template.

Figure 11.10 – DataZone domain projects navigation

14. Choose the SalesPublisher project. In the following steps, we will create an environment

profile, an environment, and a data source.

15. On the Environments page, select CREATE ENVIRONMENT PROFILE:

Figure 11.11 – Create an environment profile for the SalesPublisher project

16. Enter the name SalesEnvironmentProfile.

Data Sharing with Amazon Redshift362

17. Set the owner as SalesPublisher.

Figure 11.12 – Create the environment profile owner SalesPublisher

18. For Blueprint, select Default Data warehouse.

19. Then, select Choose a parameter set. Select your account AWS account number. Choose

the sales-redshift-serverless parameter set.

Figure 11.13 – Create the environment profile parameter set for SalesPublisher

20. Select SalesPublisher under Authorized projects. Choose publish from any schema. Choose

create environment profile:

Figure 11.14 – Create environment profile – Authorized projects set to SalesPublisher

Chapter 11 363

21. Let’s create an environment from a profile before publishing the dataset. Choose Create

Environment on the profile page.

22. For Name, enter SalesEnvironment. Select the profile SalesEnvironmentProfile. Select

Create environment. This will take a few minutes to complete:

Figure 11.15 – Create the environment SalesEnvironment

Data Sharing with Amazon Redshift364

The following are the automated environment creation steps:

Figure 11.16 – SalesEnvironment creation progress steps

23. Let’s create a data source using this environment for SalesPublisher. On the Data page,

select Create data source.

24. For Name, enter SalesData. For Data source, select Amazon Redshift:

Chapter 11 365

Figure 11.17 – Data source creation – SalesData

25. For the environment, select SalesEnvironment. For credentials, click Use environment’s

credentials. Under Data Selection, enter the schema name where your data is located, in

this case public, and then specify a table selection criterion, *.

Figure 11.18 – Data source creation setup

Data Sharing with Amazon Redshift366

26. Click Next.

27. Select Yes under Publish assets to the catalog. Select Automated business name genera-

tion. This means that Amazon DataZone will automatically generate the business names

of the table and columns for that asset using generative AI.

Figure 11.19 – Data source creation configuration for publishing assets

28. Click Next. Select Run on demand. Click Next:

Figure 11.20 – Data source run preference

29. Review the configuration for the data source. Click Select.

30. Once the data source is created, click Run.

Figure 11.21 – Data source run to refresh assets

Chapter 11 367

31. On completion, you will see a list of assets.

Figure 11.22 – Data source assets list

32. Before publishing, let’s generate a business description and terms for these assets using

DataZone’s generative AI. Choose Customers and select GENERATE DESCRIPTIONS:

Figure 11.23 – Generate descriptions for the Customers asset

Data Sharing with Amazon Redshift368

33. Once business metadata has been generated, click Accept. You can choose to modify

metadata. You can view lineage using an OpenLineage-compatible data lineage visual-

ization (https://aws.amazon.com/blogs/big-data/amazon-datazone-introduces-

openlineage-compatible-data-lineage-visualization-in-preview/). You can also

import data quality scores for assets (https://docs.aws.amazon.com/datazone/latest/

userguide/datazone-data-quality.html).

Figure 11.24 – Accept generated business metadata for the Customers asset

34. Navigate to the data quality and lineage tabs.

35. Now publish the Customers asset.

Figure 11.25 – Publish the Customers asset

https://aws.amazon.com/blogs/big-data/amazon-datazone-introduces-openlineage-compatible-data-lineage-visualization-in-preview/
https://aws.amazon.com/blogs/big-data/amazon-datazone-introduces-openlineage-compatible-data-lineage-visualization-in-preview/
https://docs.aws.amazon.com/datazone/latest/userguide/datazone-data-quality.html
https://docs.aws.amazon.com/datazone/latest/userguide/datazone-data-quality.html

Chapter 11 369

36. Repeat steps 31 to 33 for the products, order_items, and orders assets.

37. Navigate to the SalesData data source details and validate that PUBLISHING SETTINGS

is set to Yes.

Figure 11.26 – Data source publishing settings

38. Navigate to Data, select Published data, and then choose Assets.

Figure 11.27– Published data view

We will now select MarketingConsumer and subscribe to published assets.

Data Sharing with Amazon Redshift370

39. Let’s set up an environment profile and environment for the MarketingConsumer project.

Choose the MarketingConsumer project.

40. Navigate to Create environment profile. For Name, enter MarketingEnvironmentProfile.

Figure 11.28 – Create a marketing environment profile

41. For blueprint, choose Default Data warehouse. For Parameter set, select your AWS ac-

count and choose the marketing-redshift-serverless parameter set.

Figure 11.29 – Create a marketing environment profile parameter set

Chapter 11 371

42. Choose Authorized project only and select the MarketingConsumer project. For Pub-

lishing, select Don’t allow publishing. Choose Create environment profile.

Figure 11.30 – Create the marketing environment profile – Don’t allow publishing

setting

43. Let’s create an environment for MarketingEnvironmentProfile. For Name, enter

MarketingEnvironment. For the profile, choose MarketingEnvironmentProfile. Click

Create environment.

Figure 11.31 – Create a marketing environment

Data Sharing with Amazon Redshift372

44. Let’s submit a request to subscribe to the Customers asset from the SalesPublishing

project. In the search bar, type in customers. From the list, select customers.

Figure 11.32 – Search for customers data

45. Click Subscribe. Provide a reason for the subscription. Enter For promotional events

as the reason for the request. Click Request.

Figure 11.33 – Subscribe to a request for customers data

Chapter 11 373

46. Choose the SalesPublisher project. Navigate to Published data, then Incoming requests.

You will see the subscription request for the Customers asset.

Figure 11.34 – Subscribe request for customers data for approval in the SalesPub-

lisher project

47. Let’s view the request and approve it. Select Full access. For Decision comment, enter

approved. Choose Approve.

Figure 11.35 – Subscribe request for customers asset approved

Data Sharing with Amazon Redshift374

48. Navigate to the MarketingConsumer project and select Subscription and review subscribed

data. It will take a few minutes to add the customers assets to the environment.

Figure 11.36 – MarketingConsumer project asset added to the environment

49. Let’s query the customers assets. Navigate to the environment and choose MarketingEn-

vironment. Click Query data with Amazon Redshift. On subscription approval, DataZone

creates a data share in the Redshift serverless marketing-wg, creates a federated user, and

creates a view to access the assets. This abstraction simplifies your collaboration of assets
between projects for analytics.

Figure 11.37 – Query customers data using Amazon Redshift

Chapter 11 375

50. Select OPEN AMAZON REDSHIFT.

Figure 11.38 – Open Amazon Redshift approval

51. This will bring you to Query Editor V2. Log in to the marketing-wg serverless endpoint

using the federated user. Expand the data explorer. You will see the datazone_env_mar-

ketingenvironment schema as well as customers.

Figure 11.39 – Query Editor V2 data object explorer for marketing-wg

Data Sharing with Amazon Redshift376

52. In Query Editor V2, run the following query:

select * from "datazone_env_marketingenvironment"."customers";

Figure 11.40 – Query Editor V2 query results for the customers asset

How it works…
In the producer account, data assets stored across Amazon S3, Redshift, RDS, and third-party

sources are registered in the Amazon DataZone catalog within the central governance account.

Amazon DataZone’s business catalog serves as a central governance hub in a data mesh architec-

ture, enabling domain-oriented teams to autonomously manage and discover data assets. The

catalog leverages generative AI capabilities to automatically generate rich metadata, business

context, and use case descriptions for data assets, making them easily discoverable across orga-

nizational boundaries. This central account serves as the control center, hosting the DataZone

domain and data portal, while connecting producer and consumer AWS accounts through Data-

Zone domain associations. End users access the DataZone portal using IAM credentials or SSO

integration through IAM Identity Center, where they can explore asset information including

data quality metrics and both business and technical metadata. The architecture implements a

self-service model where users request access through DataZone’s subscription feature, subject

to asset owner approval. Once granted access, consumers can leverage the data in their accounts

for various purposes: developing AI/ML models in SageMaker, performing analytics with Athena,

conducting data warehousing operations in Redshift, or creating visualizations using QuickSight.

Chapter 11 377

Figure 11.41 – Amazon DataZone data mesh pattern

Data sharing using AWS Data Exchange for
monetization and subscribing to third-party data
AWS Data Exchange enables secure data sharing of Amazon Redshift data through its integration

with Redshift data shares. Organizations can publish their Redshift data as licensed data prod-

ucts, which subscribers can directly query from their own Redshift clusters without copying or

moving the underlying data. To share data, providers first create a data share in their Redshift

cluster using the CREATE DATASHARE command, add specific schemas, tables, or views, and then
publish it as a data product on AWS Data Exchange. Publishers can choose to publicly or privately

share products. Subscribers can discover these data products through the AWS Data Exchange

catalog, and once subscribed, the data appears as a database in their Redshift cluster through

the use of a managed AWS Data Exchange data share. This streamlines data monetization and

consumption while maintaining security.

Data Sharing with Amazon Redshift378

Getting ready
To complete this recipe, you will need the following:

• An IAM user with access to Amazon Redshift

• Amazon Redshift serverless in the us-east-1 Region

• The AWSDataExchangeSubscriberFullAccess IAM permission associated with your IAM

user/role

How to do it…
In this recipe, we will subscribe to the AWS Data Exchange data product Worldwide Event At-

tendance. Then, we will use Amazon Redshift serverless to access Worldwide Event Attendance:

1. Navigate to the AWS Data Exchange console.

2. From the left navigation pane, choose Product catalog under Subscribed with AWS

Marketplace.

3. Search for Worldwide Event.

4. Choose Worldwide Event Attendance (Test Product). Select Continue to subscribe. This

product costs zero dollars.

Figure 11.42 – Amazon Data Exchange test product subscription

Chapter 11 379

5. Review the terms and conditions. Click Subscribe. You can choose No for Offer auto-re-

newal.

Figure 11.43 – Amazon Data Exchange test product subscribe

6. Once the subscription is successful, you will be able to see the product under Subscribed

with AWS Marketplace | Active subscriptions.

7. Navigate to the Redshift serverless namespace on the console.

8. Click the Datashares tab and create a connection for your Redshift user to the dev database.

Figure 11.44 – Amazon Redshift console | Datashares | Connect to database

9. Navigate to Subscriptions to AWS Data Exchange datashares.

Figure 11.45 – Amazon Redshift data shares from subscriptions

Data Sharing with Amazon Redshift380

10. Choose worldwide_event_test_data and select Create database from datashare. Enter the

worldwide_event_test_db database name. Select Without Permissions. Click Create.

Figure 11.46 – Amazon Redshift create database from the subscriptions data share

11. Log on to Query Editor V2 and connect to your serverless workgroup.

12. Expand the data object explorer on the left. Expand external_databases. Further expand

worldwide_event_test_db.

Figure 11.47 – Amazon Redshift Query Editor V2 data explorer view listing data share

objects

Chapter 11 381

13. Let’s analyze the data shared with the third-party dataset using the following SQL. Run

this query:

SELECT event.eventname, event.starttime, venue.venuename, venue.

venuecity, venue.venuestate,venueseats

FROM "worldwide_event_test_db"."public"."event" as event

JOIN "worldwide_event_test_db"."public"."venue" as venue

on event.venueid=venue.venueid

WHERE venue.venueseats > 0;

The following is the output of the preceding query:

Figure 11.48 – Amazon Redshift Query Editor V2 data share query output

How it works…
The process consists of two main workflows – the provider and subscriber paths. On the provider
side, the data analyst first creates an AWS Data Exchange managed data share and loads data into
their Redshift database. They then create a dataset from this data share, add it to a product, and

can create private or public offers for specific customers. The provider can also set up pipelines
to refresh new data to their Redshift cluster automatically. On the subscriber side, once they

subscribe to the product through AWS Data Exchange, a database is automatically created from

the data share in their environment. The subscriber’s data analyst can then launch a serverless

workspace and run queries directly against the shared data through their own Redshift instance.

Data Sharing with Amazon Redshift382

This serverless architecture enables seamless data sharing between providers and subscribers

while maintaining data security and governance through AWS’s managed services. This pattern

works for both provisioned and serverless Amazon Redshift.

Figure 11.49 – AWS Data Exchange provider and subscriber flow

12
Generative AI and ML with
Amazon Redshift

In this chapter, we explore how Amazon Redshift is transforming data analytics with integrated

machine learning (ML) capabilities and generative AI. Redshift ML enables users to create, train,

and deploy ML models directly within a Redshift data warehouse, supporting a range of use cases

from supervised learning to advanced generative AI models like large language models (LLMs).

You’ll discover how Redshift ML can streamline processes such as forecasting and sentiment

analysis, and how Amazon Q enhances these capabilities with AI-driven assistants for query

authoring and business intelligence (BI).

Finally, we’ll delve into the future potential of generative AI within the Amazon Redshift data

warehouse (serverless or provisioned cluster) and its broader impact on data analytics.

The following recipes are covered in this chapter:

• Building SQL queries automatically using Amazon Q generative SQL

• Managing Amazon Redshift ML

• Using LLMs in Amazon Bedrock using SQL statements

• Using LLMs in Amazon SageMaker to jumpstart using SQL statements

• Querying your data with natural language prompts using Amazon Bedrock knowledge

bases for Amazon Redshift

• Generative BI with Amazon Q with QuickSight querying an Amazon Redshift dataset

Generative AI and ML with Amazon Redshift384

Technical requirements
Here are the technical requirements in order to complete the recipes in this chapter:

• Access to the AWS Management Console.

• An Amazon Redshift data warehouse deployed in the AWS Region eu-west-1.

• Amazon Redshift data warehouse admin user credentials.

• AWS administrator permission to create an IAM role by following Recipe 3 in Appendix.

This IAM role will be used for some of the recipes in this chapter.

• Attach an IAM role to the Amazon Redshift data warehouse by following Recipe 4 in

Appendix. Make note of the IAM role name; we will refer to it in the recipes with [Your-

Redshift_Role].

• AWS administrator permission to deploy the AWS CloudFormation template (https://

github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter12/

chapter_12_CFN.yaml), which creates two IAM policies and the quicksight-role role:

• An IAM policy attached to the IAM user that will give them access to Amazon

Redshift, Amazon RDS, Amazon Kinesis, Amazon Kinesis Data Firehose, Amazon

CloudWatch Logs, AWS CloudFormation, AWS Secret Manager, Amazon Cognito,

Amazon S3, AWS DMS and AWS Glue

• An IAM policy attached to the IAM role that will allow the Amazon Redshift data

warehouse to access Amazon S3

• The IAM role quicksight-role gives access to QuickSight to create a VPC

connection to Amazon Redshift

• Access to any SQL interface, such as a SQL client or Amazon Redshift Query Editor.

• An AWS account number; we will refer to it in the recipes with [Your-AWS_Account_Id].

• An Amazon S3 bucket created in eu-west-1; we will refer to it with [Your-Amazon_S3_

Bucket].

• The code files can be found in the GitHub repo: https://github.com/PacktPublishing/
Amazon-Redshift-Cookbook-2E/tree/master/Chapter11.

Building SQL queries automatically using Amazon Q
generative SQL
In this recipe, you’ll learn how to leverage Amazon Q, a generative AI-powered SQL assistant in

Amazon Redshift Query Editor. Amazon Q simplifies query authoring by transforming natural
language prompts into SQL queries, reducing the complexity of writing SQL manually.

https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter12/chapter_12_CFN.yaml
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter12/chapter_12_CFN.yaml
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter12/chapter_12_CFN.yaml
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/tree/master/Chapter11
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/tree/master/Chapter11

Chapter 12 385

Whether you’re a data engineer, analyst, or non-technical user, Amazon Q generative SQL enables

you to interact with your data more intuitively, speeding up analysis and improving efficiency.
By the end of this recipe, you’ll understand how to use natural language commands to generate

SQL queries that can be run directly using Amazon Redshift for insights.

Getting ready
To complete this recipe, you will need:

• An Amazon Redshift data warehouse deployed in the AWS Region eu-west-1, with the

retail dataset from Chapter 3, in the Loading and unloading data recipe

• Amazon Redshift data warehouse master user credentials

• Access to Amazon Redshift Query Editor V2

How to do it…
1. Navigate to the Amazon Redshift console and then to Query Editor V2 (https://console.

aws.amazon.com/sqlworkbench/home) and click on the gear icon, and select Q generative

SQL settings, as shown in the following screenshot:

Figure 12.1 – Q generative SQL settings in Query Editor V2

https://console.aws.amazon.com/sqlworkbench/home
https://console.aws.amazon.com/sqlworkbench/home

Generative AI and ML with Amazon Redshift386

2. Optionally, you can scroll down to the Custom Context section. In this section, you can

add additional details about the schema in JSON format that generative SQL can leverage

to generate more accurate SQL. Click on Add custom context and paste the sample JSON

from GitHub (https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/

blob/main/Chapter11/SampleCustomContext.json) in the editor, then click Save.

3. Amazon Q generative SQL is available in the notebooks feature of Query Editor V2. Click on

the + icon in Query Editor and choose Notebook. Then, click on the Amazon Q generative

SQL icon, as shown in the following screenshot, to open the Amazon Q generative SQL

window, where you can ask questions about the dataset in natural language to generate

SQL statements.

Figure 12.2 – Opening the Amazon Q generative SQL chat window

4. Type a question about the data, for example, Who are the top 10 high value customers?,

and submit it to Amazon Q. You will receive a SQL statement as output, along with an

Add to notebook button. When you click on it, the query will be added to the notebook

and you can run it to see the results.

https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter11/SampleCustomContext.json
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter11/SampleCustomContext.json

Chapter 12 387

Figure 12.3 – Sample interaction with Q generative SQL

How it works…
Amazon Q generative SQL uses the schema of objects in your database or the custom content

you provided as context to the generative AI model. In addition to the schema, it also uses the

user query history as context. The generative AI model then generates a SQL statement that can

answer your natural language question and presents it to you. You can then add it to a notebook,

execute it, and share the results.

Managing Amazon Redshift ML
Amazon Redshift ML enables Amazon Redshift users to create, deploy, and execute ML models

using familiar SQL commands. Amazon Redshift has built-in integration with Amazon SageMaker

Autopilot, which chooses the best ML algorithm based on your data using automatic algorithm

selection. It enables users to run ML algorithms without the need for expert knowledge in ML. On

the other hand, ML experts such as data scientists have the flexibility to select algorithms such
as XGBoost and specify the hyperparameters and preprocessors. Once the ML model is deployed

in Amazon Redshift, you can run the prediction using SQL at scale. This integration completely

simplifies the pipeline required to create, train, and deploy the model for prediction.

Generative AI and ML with Amazon Redshift388

Amazon Redshift ML allows you to create, deploy, and predict using the data in the data warehouse

as follows:

Figure 12.4 – Amazon Redshift ML capabilities

Getting ready
To complete this recipe, you will need:

• An Amazon Redshift data warehouse deployed in the eu-west-1 Region.

• Sample data loaded using the Chapter 3 recipe Loading and unloading data.

• Amazon Redshift data warehouse admin user credentials.

• Access to any SQL interface, such as a SQL client or Amazon Redshift Query Editor.

• An IAM role attached to an Amazon Redshift data warehouse that can access Amazon S3

and Amazon SageMaker. We will refer to it in the recipes with [Your-Redshift_Role].

• An Amazon S3 bucket created in eu-west-1. We will refer to it with [Your-Amazon_S3_

Bucket].

Chapter 12 389

How to do it…
In this recipe, we will use the product reviews data that was set up in Chapter 3, in the Loading

and unloading data recipe. We will build the model to predict the star_rating values of the

products table:

1. Open any SQL client tool and execute the following query to create the training data to

train the model by using 50000 records for the product category home:

create schema product_reviews;

create table product_reviews.amazon_reviews_train

as SELECT * FROM product_reviews where product_category = 'Home'

limit 50000;

2. To create the model, execute the following query. This will use Autopilot to determine the

problem type, with a max runtime of 900 seconds. This model will predict the star_rating.

The CREATE MODEL SQL will run asynchronously. With this step, Amazon Redshift will

unload the data to the S3 bucket and Autopilot will use that dataset to train the model.

After the model is trained, the code will be compiled using Amazon SageMaker Neo and

will be deployed to the Amazon Redshift data warehouse. The model can then be accessed

using the user-defined function func_product_rating:

CREATE MODEL product_rating

FROM (

SELECT marketplace, customer_id

 , review_id, product_id

 , product_parent, product_title

 , product_category, star_rating

 , helpful_votes, total_votes

 , vine, verified_purchase

 , review_headline, review_body

 FROM product_reviews.amazon_reviews_train

) TARGET star_rating

FUNCTION func_product_rating

IAM_ROLE '[Your-Redshift_Role]'

SETTINGS(S3_BUCKET '[Your-Amazon_S3_Bucket]', MAX_RUNTIME 1800, S3_

GARBAGE_COLLECT OFF);

Generative AI and ML with Amazon Redshift390

3. To check the status of the model creation, execute the following query. Check if the

model state is Ready. When the model state is Ready, it shows the problem type of

MulticlassClassification and an accuracy of 0�62940 for this model:

show model product_rating;

The preceding query will return output similar to the following:

Figure 12.5 – Output of the preceding query

4. To predict the star_ratings, execute the following query to validate the accuracy of the

ML model. The user-defined function func_product_rating predicts the star_rating

and we compare it to the actual value to determine the accuracy of the model:

WITH infer_data

AS (

 SELECT star_rating AS actual

 ,func_product_rating(marketplace

 , customer_id, review_id, product_id

 , product_parent, product_title

 , product_category, helpful_votes

 , total_votes, vine, verified_purchase

 , review_headline, review_body) AS predicted

 , CASE WHEN star_rating = predicted

 THEN 1::INT ELSE 0::INT

 END AS correct

Chapter 12 391

 FROM product_reviews.amazon_reviews

 where product_category = 'Home'

)

 ,aggr_data AS (

 SELECT SUM(correct) AS num_correct

 ,COUNT(*) AS total

 FROM infer_data

)

SELECT (num_correct::FLOAT / total::FLOAT) AS accuracy

FROM aggr_data;

The preceding query will return the following output:

accuracy

0.627847778989157

How it works…
Amazon Redshift simplifies the pipeline to create the models and use the model for prediction

using SQL. With Amazon Redshift, you can build models for different use cases, such as customer

churn prediction, predicting whether a sales lead will close, fraud detection, etc. You can use

simple SQL statements to create ML workflows. Use the CREATE MODEL SQL command to specify

training data as either a table or a SELECT statement. Redshift ML then compiles and imports the

trained model inside the Redshift data warehouse and prepares a SQL inference function that

can be immediately used in SQL queries. Redshift ML automatically handles all the steps needed

to train and deploy a model.

Using LLMs in Amazon Bedrock using
SQL statements
In this recipe, you’ll learn how to leverage LLMs for language translation directly within Amazon

Redshift through its native integration with Amazon Bedrock. Amazon Redshift ML now extends

its SQL-based ML capabilities to include foundation models available through Bedrock, enabling

you to perform sophisticated natural language processing tasks using familiar SQL commands.

We’ll demonstrate this capability by translating order comments from Spanish to English using

Anthropic Claude 3 Haiku, one of the foundation models available through Amazon Bedrock. This

integration showcases how you can combine Amazon Redshift’s data warehousing capabilities

with advanced language models to perform translations directly within your database environment,

eliminating the need for external translation services or data movement.

Generative AI and ML with Amazon Redshift392

Getting ready
To complete this recipe, you will need:

• An Amazon Redshift data warehouse deployed in the AWS Region eu-west-1

• Amazon Redshift data warehouse admin user credentials

• Access to any SQL interface, such as a SQL client or Amazon Redshift Query Editor

• An IAM role attached to an Amazon Redshift data warehouse with the managed policy

AmazonBedrockFullAccess attached to it

How to do it…
We will start by configuring access to the Anthropic Claude 3 Haiku model through Amazon
Bedrock and load sample order data into Amazon Redshift. Then, we’ll create a model using

Amazon Redshift ML that connects to the Amazon Bedrock foundation model. Finally, we’ll write

SQL queries to invoke this model and translate the Spanish comments to English, demonstrating

the seamless integration between these AWS services:

1. Navigate to the Amazon Bedrock console (https://console.aws.amazon.com/bedrock/).

2. In the navigation pane, choose Model Access, as shown in the following screenshot:

Figure 12.6 – Amazon Bedrock model access

3. If you are accessing Amazon Bedrock for the first time, you will see the Enable specific
models button. Select it. Otherwise, you will see the Modify model access button. Select it.

https://console.aws.amazon.com/bedrock/

Chapter 12 393

4. In the search box, search for the Claude 3 Haiku model. Select it and click Next, as shown

in the following screenshot:

Figure 12.7 – Amazon Bedrock model selection

5. Read the terms and click the Submit button.

6. Next, connect to your Amazon Redshift data warehouse using Query Editor V2 (https://

console.aws.amazon.com/sqlworkbench/home).

7. Create an order_comments table and load some sample data into it using the SQL

statements provided below. The insert statement loads some orders with Spanish

comments into the table:

create table order_comments (order_id int, comment varchar(100));

insert into order_comments values (1, 'Dirección de envío

actualizada'),

(2,'Por favor manipular con cuidado frágil'),(3,'Llamar antes de

entregar');

8. Create an external model using the SQL statement below. This will create a SQL function

named 'translate_to_english' that can be invoked in SQL statements. For MODEL_ID,

Anthropic Claude 3 Haiku’s ID is provided. Refer to this documentation page for more

information about Amazon Bedrock model IDs (https://docs.aws.amazon.com/bedrock/

latest/userguide/model-ids.html). The model’s behavior is configured using two
key parameters: 'Prompt' and 'Suffix'. The 'Prompt' parameter provides the initial

instruction to the LLM describing the translation task.

https://console.aws.amazon.com/sqlworkbench/home
https://console.aws.amazon.com/sqlworkbench/home
https://docs.aws.amazon.com/bedrock/latest/userguide/model-ids.html
https://docs.aws.amazon.com/bedrock/latest/userguide/model-ids.html

Generative AI and ML with Amazon Redshift394

Your input data from Amazon Redshift is then automatically appended between the

prompt and suffix. The 'Suffix' parameter adds any final instructions needed to complete
the prompt before it’s sent to the LLM:

CREATE EXTERNAL MODEL claude_model_translate_to_english

FUNCTION translate_to_english

IAM_ROLE DEFAULT

MODEL_TYPE BEDROCK

SETTINGS (

 MODEL_ID 'anthropic.claude-3-haiku-20240307-v1:0'

 ,PROMPT 'Translate this statement from Spanish to English'

 , SUFFIX 'Return only the translated sentence in lowercase and

nothing else'

 , REQUEST_TYPE UNIFIED

 , RESPONSE_TYPE VARCHAR

);

9. Run the following SQL to translate the Spanish comments to English:

SELECT comment as comment_in_spanish,

translate_to_english(comment) as comment_in_english

from order_comments

limit 5;

Figure 12.8 – Output of Amazon Redshift and Amazon Bedrock integration

Chapter 12 395

How it works…
Amazon Redshift’s integration with Amazon Bedrock enables direct access to foundation models

through SQL statements. It has the following features:

• Native integration: Amazon Redshift connects directly with Amazon Bedrock through

built-in integration, allowing you to perform generative AI tasks using SQL commands

across both provisioned and serverless environments.

• External model creation: The CREATE EXTERNAL MODEL statement establishes a connection

with the specified Bedrock foundation model and automatically generates a SQL function
for model interaction.

• Prompt engineering: Redshift constructs a complete prompt by combining your template,

input data, and suffix instructions, then passes these to the Converse API, ensuring
consistent interaction with foundation models.

• Execution: The translation function handles communication between Redshift and

Bedrock automatically, with the foundation model processing requests and returning

results in real time for use in SQL operations.

Using LLMs in Amazon SageMaker Jumpstart using
SQL statements
In this recipe, you’ll explore how to use LLMs for tasks like sentiment analysis directly within

Amazon Redshift by leveraging the integration with Amazon SageMaker Jumpstart. Amazon

Redshift ML allows you to create ML models using SQL commands, and now, with LLM support,

you can tap into powerful pre-trained models for text processing.

By following this recipe, you’ll learn how to deploy an LLM through SageMaker Jumpstart,

connect it to Redshift ML, and perform advanced natural language processing tasks like sentiment

classification on your data—all without the need to manage complex ML pipelines. This integration
simplifies the use of generative AI for extracting insights from unstructured data in Redshift.

Getting ready
To complete this recipe, you will need:

• An Amazon Redshift data warehouse deployed in the AWS Region eu-west-1

• Amazon Redshift data warehouse admin user credentials

• Access to any SQL interface, such as a SQL client or Amazon Redshift Query Editor

Generative AI and ML with Amazon Redshift396

• An IAM role attached to an Amazon Redshift data warehouse that can invoke Amazon

SageMaker Jumpstart endpoints. Ensure that the role includes sagemaker:InvokeEndpoint

permissions.

How to do it…
We will start by deploying a pre-trained LLM using Amazon SageMaker Jumpstart. This will involve

navigating to SageMaker in the AWS Management Console, selecting a foundation model, and

setting up an endpoint that will be used by Amazon Redshift ML to perform sentiment analysis:

1. Navigate to Foundation models (https://console.aws.amazon.com/sagemaker/home#/

foundation-models) in Amazon SageMaker Jumpstart.

2. Search for the foundation model by typing Falcon 7B Instruct BF16 in the search box

and click View model:

Figure 12.9 – Selecting an LLM in Amazon SageMaker Jumpstart

3. On the Model Details page, choose Open model in Studio. When the Select domain

and user profile dialog box opens up, choose the profile you’d like from the dropdown
and click Open Studio. (If this is the first time you’re doing this, you may see the Create

a SageMaker domain button. Click it and select Setup.) When the model is open, select

Deploy, as shown in the following screenshot:

https://console.aws.amazon.com/sagemaker/home#/foundation-models
https://console.aws.amazon.com/sagemaker/home#/foundation-models

Chapter 12 397

Figure 12.10 – Deploy the LLM

4. On the Deploy model to endpoint page, select ml.g5.2xlarge or any other instance type

recommended in the notebook, and then click Deploy. Wait until the status of the model

changes from Creating to In Service:

Figure 12.11 – Setting up the SageMaker endpoint environment

Figure 12.12 – Model in service

Generative AI and ML with Amazon Redshift398

5. Log in to the Amazon Redshift endpoint. You can use Query Editor V2 to log in.

6. Ensure you have the below IAM policy added to your IAM role. Replace <endpointname>

with the SageMaker Jumpstart endpoint name captured earlier:

{

 "Statement": [

 {

 "Action": "sagemaker:InvokeEndpoint",

 "Effect": "Allow",

 "Resource":

"arn:aws:sagemaker:<region>:<AccountNumber>:endpoint/<endpointname>",

 "Principal": "*"

 }

]

}

7. Create a model in Amazon Redshift using the CREATE MODEL statement given below.

Replace <endpointname> with the endpoint name captured earlier. The input and output

data type for the model needs to be SUPER:

CREATE MODEL falcon_7b_instruct_llm_model

FUNCTION falcon_7b_instruct_llm_model(super)

RETURNS super

SAGEMAKER '<endpointname>'

IAM_ROLE default;

SETTINGS (

 MAX_BATCH_ROWS 1);

8. Create the sample_reviews table using the following SQL statement. This table will store

the sample reviews dataset:

CREATE TABLE sample_reviews(review varchar(4000));

9. Download the sample file (https://aws-blogs-artifacts-public.s3.amazonaws.com/
BDB-3745/sample_reviews.csv), upload it into your S3 bucket, and load data into the

sample_reviews table using the following COPY command:

COPY sample_reviews

FROM 's3://<<your_s3_bucket>>/sample_reviews.csv'

IAM_ROLE DEFAULT

https://aws-blogs-artifacts-public.s3.amazonaws.com/BDB-3745/sample_reviews.csv
https://aws-blogs-artifacts-public.s3.amazonaws.com/BDB-3745/sample_reviews.csv

Chapter 12 399

csv

DELIMITER ','

IGNOREHEADER 1;

10. Create a UDF that engineers the prompt for sentiment analysis. The input to the LLM

consists of two main parts – the prompt and the parameters. The prompt is the guidance

or set of instructions you want to give to the LLM. The prompt should be clear to provide

proper context and direction for the LLM. The parameters (https://huggingface.co/

blog/sagemaker-huggingface-llm#4-run-inference-and-chat-with-our-model) allow

configuring and fine-tuning the model’s output. This includes settings like maximum
length, randomness levels, stopping criteria, and more. Parameters give control over the

properties and style of the generated text and are model-specific.

The UDF given below has both the prompt and a parameter:

• Prompt: Classify the sentiment of this sentence as Positive, Negative,

Neutral. Return only the sentiment nothing else. This instructs the model

to classify the review into three sentiment categories.

• Parameter: "max_new_tokens":1000. This allows the model to return up to 1,000

tokens.

CREATE FUNCTION udf_prompt_eng_sentiment_analysis (varchar)

returns super

stable

as $$

 select json_parse(

 '{"inputs":"Classify the sentiment of this sentence as

Positive, Negative, Neutral. Return only the sentiment

nothing else.' || $1 || '","parameters":{"max_new_

tokens":1000}}')

$$ language sql;

• Make a remote inference to the LLM to generate sentiment analysis for the input

dataset.

The output of this step is stored in a newly created table called sentiment_

analysis_for_reviews. Run the below SQL statement to create a table with

output from the LLM:

CREATE table sentiment_analysis_for_reviews

as

https://huggingface.co/blog/sagemaker-huggingface-llm#4-run-inference-and-chat-with-our-model
https://huggingface.co/blog/sagemaker-huggingface-llm#4-run-inference-and-chat-with-our-model

Generative AI and ML with Amazon Redshift400

(

 SELECT review,

 falcon_7b_instruct_llm_model

 (udf_prompt_eng_sentiment_analysis(review)) as

sentiment

 FROM sample_reviews

);

11. Analyze the output. The output of the LLM is of the data type SUPER. For the Falcon model,

the output is available in the attribute named generated_text. Each LLM has its own

output payload format. Please refer to the documentation for the LLM you would like to

use for its output format. Run the below query to extract the sentiment from the output

of the LLM. For each review, you can see its sentiment analysis:

SELECT review, sentiment[0]."generated_text" :: varchar as sentiment

FROM sentiment_analysis_for_reviews;

Figure 12.13 – Output of sentiment analysis in Amazon Redshift using LLM integration

Chapter 12 401

How it works…
Amazon Redshift ML enables direct integration with LLMs from Amazon SageMaker Jumpstart

using SQL. It curates the prompt and sends it to the model endpoint deployed using SageMaker

Jumpstart. The request is sent in JSON format and the response from the LLM is also received in

JSON format, which is then parsed and shown to the end user.

This streamlined workflow enables data teams to leverage advanced NLP capabilities directly
within their SQL environment, eliminating the need for complex ML pipelines.

Querying your data with natural language prompts
using Amazon Bedrock knowledge bases for
Amazon Redshift
In this recipe, you’ll learn how to implement natural language querying capabilities for your

Amazon Redshift data warehouse using Amazon Bedrock knowledge bases. This powerful

integration allows business users to interact with their data using conversational language, rather

than writing complex SQL queries. Amazon Bedrock knowledge bases create an intelligent layer

between your structured data in Redshift and LLMs, enabling users to ask questions in plain

English and receive data-driven responses. We’ll demonstrate how to set up a knowledge base with

your Redshift data warehouse as the data source, configure the necessary permissions, and start
querying your data using natural language prompts with models like Anthropic Claude 3 Haiku.

This solution bridges the gap between complex data structures and business users, democratizing

data access while maintaining security and governance through proper IAM roles and permissions.

Getting ready
To complete this recipe, you will need:

• An Amazon Redshift data warehouse deployed in the AWS Region eu-west-1

• Amazon Redshift data warehouse admin user credentials

• Load the sample data in the Amazon Redshift data warehouse using the Loading data from

Amazon S3 using COPY recipe in Chapter 3 into the dev database

Generative AI and ML with Amazon Redshift402

How to do it…
We will create a knowledge base with a structured data store with your Amazon Redshift data

warehouse as a data source. We will then grant access to the data in your Amazon Redshift data

warehouse to the role associated with the knowledge base. We will then test the knowledge base

by asking natural language questions about the data stored:

1. Navigate to the Amazon Bedrock console (https://console.aws.amazon.com/bedrock/).

2. In the navigation pane, choose Knowledge Bases. In the page that opens up, click

Create and then Knowledge Base with structured data store, as shown in the following

screenshot:

Figure 12.14 – Creating a knowledge base with a structured data store

3. For Knowledge Base name, choose a name of your choice, for example, knowledge base

for redshift sales warehouse. Enter an optional description. In Data source details,

choose Amazon Redshift as the query engine. In the IAM Permissions section, choose

the Create and use a new service role option and click Next.

https://console.aws.amazon.com/bedrock/

Chapter 12 403

Figure 12.15 – Choose Amazon Redshift as data source, and create and use new

service role for IAM permissions

4. On the page that opens, in the Query engine details section, choose Redshift Serverless

or Redshift Provisioned based on the compute type for your Amazon Redshift data

warehouse.

Generative AI and ML with Amazon Redshift404

5. In the Default storage metadata section, under Options, choose Amazon Redshift

databases and Redshift database list. If you are using data sharing using Lake Formation,

you can choose the AWS Default Glue Data Catalog option here. In the same section, for

Database, choose the database you want to connect to, for example, dev:

Figure 12.16 – Choose default storage metadata

6. You can use the optional Query configurations section to provide more information to

the LLM regarding the table structure. You can add descriptions of tables and columns,

as shown in Figure 12.17.

Figure 12.17 – Sample description for the customer table

Chapter 12 405

7. You can choose to include/exclude columns that the LLM should consider. You can provide

curated queries that the LLM can use as a reference to generate new queries, as shown

in Figure 12.18:

Figure 12.18 – Optional configurations for a knowledge base for structured data

If you don’t configure this section, the LLM will use the table and column names to

understand the table schema. You can also choose the maximum time a query issued by

Amazon Bedrock is allowed to run on Amazon Redshift using the Maximum query time

attribute.

Generative AI and ML with Amazon Redshift406

8. Click Next, and on the next page, review the configuration and select Create Knowledge

Base. Once the knowledge base is available, copy the name of the service role:

Figure 12.19 – Copy the service role’s ARN by clicking on the link as shown

9. Connect to your Amazon Redshift warehouse using Query Editor V2 and run the below

SQL statements to grant SELECT permission on your tables to the service role:

CREATE USER "IAMR:service-role-name" WITH PASSWORD DISABLE;

GRANT SELECT ON customer TO "IAMR:service-role-name";

GRANT SELECT ON orders TO "IAMR:service-role-name";

GRANT SELECT ON lineitem TO "IAMR:service-role-name";

GRANT SELECT ON supplier TO "IAMR:service-role-name";

GRANT SELECT ON dwdate TO "IAMR:service-role-name";

GRANT SELECT ON part TO "IAMR:service-role-name";

Chapter 12 407

10. Go back to the knowledge base, select the dev database in the Query engine section, and

click Sync:

Figure 12.20 – Sync the query engine

11. When the sync completes, click the Test button to start testing the knowledge base:

Figure 12.21 – Start testing the knowledge base

12. In the test window, you can select any model you’d like, for example, Anthropic Claude 3

Haiku, and start asking it questions in natural language. For example, you can ask Name

the customer who placed the highest number of orders, as shown in the following

screenshot, and receive a natural language answer based on your data. You can ask complex,

open-ended analysis questions to perform generative BI using this solution.

Generative AI and ML with Amazon Redshift408

For example, you can ask Who is the most effective supplier and get the following

response:

Figure 12.22 – Natural language query response

How it works…
Here’s how Amazon Bedrock knowledge bases work with structured data:

• Schema understanding: Amazon Bedrock fetches your schema either by directly accessing

Amazon Redshift metadata or by reading schema information from AWS Glue Data Catalog.

It then understands the business context of the schema using either the names or the

query configurations you provided.

• Natural language processing and SQL generation: When you ask a question in plain

English, Bedrock interprets your intent and understands the context and requirements of

your query. It then converts your natural language question into one or more SQL queries

designed to extract exactly the information needed from your database.

Chapter 12 409

• Data retrieval and presentation: The generated SQL query or queries execute against

your Amazon Redshift database. Bedrock fetches the results and transforms them into

natural language, providing you with a clear, conversational response that answers your

original question.

Generative BI with Amazon Q with QuickSight
querying an Amazon Redshift dataset
In this recipe, you’ll learn how to leverage the generative AI capabilities of Amazon Q in Amazon

QuickSight to enhance your BI workloads on top of your Amazon Redshift data warehouse. Amazon

Q allows users to interact with their data through natural language queries, interpreting their

natural language prompts and generating relevant visualizations. By combining the powerful

data processing of Amazon Redshift with the AI-driven interface of Amazon Q, this solution

empowers both technical and non-technical users to uncover actionable insights more efficiently.
You’ll discover how to leverage Amazon Q to build dashboards, create topics for enhanced Q&A

experiences, and generate automated data stories – all without the need for complex SQL queries

or extensive data modeling or reporting knowledge. This recipe showcases how generative AI

can transform traditional BI workflows and democratize data access across your organization.

Getting ready
To complete this recipe, you will need:

• An Amazon Redshift data warehouse deployed in the AWS Region eu-west-1, with the

retail dataset from Chapter 3

• Amazon Redshift data warehouse master user credentials

• Access to Amazon Redshift Query Editor V2

• To get started with Amazon Q in QuickSight’s generative BI capabilities, upgrade your

account’s users to Admin Pro, Author Pro, or Reader Pro roles

• Ensure that you deploy the CloudFormation template provided on GitHub in order to create

the quicksight-role role needed for this recipe (https://github.com/PacktPublishing/

Amazon-Redshift-Cookbook-2E/blob/main/Chapter11/chapter_11_CFN.yaml)

https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter11/chapter_11_CFN.yaml
https://github.com/PacktPublishing/Amazon-Redshift-Cookbook-2E/blob/main/Chapter11/chapter_11_CFN.yaml

Generative AI and ML with Amazon Redshift410

How to do it…
1. Navigate to the Amazon Redshift console, open Query Editor V2, and create a view called

customer_orders using the following SQL statement. In the next steps, we will see how

you can visualize this view using generative BI capabilities in Amazon QuickSight powered

by Amazon Q:

create view customer_orders

AS

(

 select c_name, c_address, c_acctbal,c_mktsegment,o_orderstatus,

o_totalprice,o_orderdate,o_orderpriority,o_clerk,o_shippriority

 from customer c

 join orders o on c.c_custkey = o.o_custkey

);

2. Navigate to Amazon QuickSight (https://quicksight.aws.amazon.com/sn/start), click

the profile icon in the top-right corner, and select Manage QuickSight.

Figure 12.23 – Select Manage QuickSight to change the settings

3. Choose Manage users from the left navigation menu and ensure that the role for the user

you are logged in as is Admin Pro. If it is not Admin Pro, change the role and click CONFIRM

on the Change user role confirmation page that pops up. Then, sign out and sign back in:

https://quicksight.aws.amazon.com/sn/start

Chapter 12 411

Figure 12.24 – Change the user role to Admin Pro and confirm the change

4. Navigate again to Amazon QuickSight (https://quicksight.aws.amazon.com/sn/start),

click the profile icon in the top-right corner, and click Manage QuickSight. Then, choose

Manage VPC connections from the left navigation pane and click ADD VPC CONNECTION.

Figure 12.25 – Click ADD VPC CONNECTION

5. On the VPC connection creation page, enter the following details:

• For VPC Connection name, enter a representative name like redshift-vpc-

connection

• For VPC ID, choose the VPC that your Amazon Redshift data warehouse is

deployed in

• For Execution role, choose quicksight-role

https://quicksight.aws.amazon.com/sn/start

Generative AI and ML with Amazon Redshift412

• For Subnets, choose the subnet for the Availability Zone (AZ) that is used for

Amazon Redshift

• For Security group, choose the security group associated with your Amazon

Redshift data warehouse

6. Once done, click ADD and wait until the status of the VPC connection changes from

UNAVAILABLE to AVAILABLE (refresh the page to get the most recent status).

Figure 12.26 – VPC connection details and creation

Chapter 12 413

7. Navigate to Amazon QuickSight (https://quicksight.aws.amazon.com/sn/start), and

from the left navigation menu, choose Datasets and then select New dataset.

Figure 12.27 – Create a new QuickSight dataset

8. You have two ways of connecting to an Amazon Redshift data warehouse: Redshift Auto-

discovered and Redshift Manual connect. If you are using an Amazon Redshift provisioned

cluster, you can choose either of the options. If you are using an Amazon Redshift Serverless

data warehouse, choose Redshift Manual connect. In this recipe, we are using the Redshift

Manual connect option.

Figure 12.28 – Choose Amazon Redshift as a source for the dataset

9. On the New Redshift data source page that pops up:

• For Data source name, provide a representative name like customer-orders-

datasource.

• For Connection type, choose redshift-vpc-connection.

• For Database server, enter your Amazon Redshift data warehouse endpoint

without the port and database name. For example, cookbook-demo.1234567890.

us-east-1.redshift-serverless.amazonaws.com.

https://quicksight.aws.amazon.com/sn/start

Generative AI and ML with Amazon Redshift414

• For Port, enter the port number associated with your Amazon Redshift data

warehouse. For example, 5439. For Database name, enter your Amazon Redshift

database name, for example, dev.

• For Username, enter the admin username, and for Password, enter the admin

user’s password. Click Validate connection and wait until the button changes to

Validated. Then, select Create data source.

Figure 12.29 – Enter connection details for Amazon Redshift

Chapter 12 415

10. On the Choose your table page, choose the customer_orders view and click Select:

Figure 12.30 – Select tables/views for visualization

11. On the Finish dataset creation page, you can choose one of the two options: Import to

SPICE for quicker analytics or Directly query your data. For this recipe, we will choose

the Directly query your data option. Click Visualize.

Figure 12.31 – Choose dataset type

Generative AI and ML with Amazon Redshift416

12. When the New sheet page opens, click CREATE.

Figure 12.32 – Create a new QuickSight analysis sheet

13. customer_orders analysis will be created. To this analysis, you can now add visuals

using QuickSight Q. You can enter natural language prompts describing what you want

to visualize and QuickSight Q will automatically generate those visuals for you.

14. Click the BUILD option in the visual to open QuickSight Q in the right-side pane. You

can enter a prompt for the visual you want, for example, Stacked bar chart for total

revenue by year and market segment. Then, click BUILD. QuickSight Q will generate

a visual. Click the ADD TO ANALYSIS button to add the visual to the analysis.

Figure 12.33 – Create visual for revenue by year and segment

Chapter 12 417

15. Try one more prompt, Pie chart for order amt by market segment. QuickSight Q

will generate a pie chart; add it to the visual by clicking the ADD TO ANALYSIS button.

Figure 12.34 – Create a pie chart for total order amount by market segment

16. The analysis will look like this after you have added both of the visuals. Click Publish in

the top-right corner to publish the visual to a dashboard.

Figure 12.35 – Analysis with QuickSight Q-generated visuals

Generative AI and ML with Amazon Redshift418

17. On the Publish a dashboard page, provide a representative name for the dashboard, for

example, market segment dashboard. In the Generative capabilities section, select both

the Allow executive summary and Allow data Q&A options and click Publish dashboard.

Figure 12.36 – Publish analysis to dashboard

18. Now let’s see how you can generate data stories to create a narrative and share it across the

organization. Navigate again to Amazon QuickSight (https://quicksight.aws.amazon.

com/sn/start) and choose Data stories from the left navigation pane. Then, click New

data story.

Figure 12.37 – Build a new data story

19. In the Build story wizard of QuickSight Q, enter a prompt, Build a story describing

how market segments are performing, and uncheck the Use insights from Amazon

Q Business option.

https://quicksight.aws.amazon.com/sn/start
https://quicksight.aws.amazon.com/sn/start

Chapter 12 419

In the Select visuals section, click +Add. Choose the visuals you created earlier and then

click BUILD and wait for QuickSight Q to automatically generate the story for you.

Figure 12.38 – Build a new data story using QuickSight Q

20. QuickSight Q will generate an editable story, as shown in the following screenshot, which

you can share across your organization.

Figure 12.39 – QuickSight Q generated data story

Generative AI and ML with Amazon Redshift420

21. Using QuickSight Q, you can also ask natural language questions about the dashboard

and get answers in the form of visuals, tables, and natural language. Navigate to Amazon

QuickSight (https://quicksight.aws.amazon.com/sn/start), and from the left

navigation menu, choose Dashboards and select the dashboard you previously published

– the market segment dashboard.

22. Click the Ask a question about this dashboard option at the top and ask What is the

total revenue for machinery segment. QuickSight Q will answer you as shown in the

following screenshot:

Figure 12.40 – QuickSight Q generated data answer

How it works…
Amazon Q integrates with Amazon QuickSight to give QuickSight users access to a suite of new

generative BI capabilities. This allows QuickSight users to utilize the generative BI authoring

experience, create executive summaries of their data, ask and answer questions of data, and

generate data stories.

https://quicksight.aws.amazon.com/sn/start

Appendix

Recipe 1: Creating an IAM user
You can use the following steps to create an IAM user:

1. Navigate to the IAM console.

2. Select Users and then click Add user.

3. Type a username for the new user. IAM usernames need to be unique in a single AWS

account. This username will be used by the user to sign in to the AWS console.

4. For access type, select both Programmatic access and AWS Management Console access:

• Programmatic access grants users access through the API, AWS CLI, or AWS Tools

for PowerShell. An access key and a secret key are created for a user, and they are

available to download on the final page.

• AWS Management Console access grants users access through the AWS Manage-

ment Console. A password is created for the user, and it is available to download

on the final page.

5. For Console password, choose one of the following:

• Autogenerated password: This will randomly generate a password for the user

that complies with the account password policy.

• Custom password: You can type a password that complies with the account pass-

word policy.

• (Optional) You can select Require password reset to ensure that users are forced

to change their password when they log in for the first time.

 422

6. Select Next: Permissions.

7. Skip the Set permissions page and select Next: Tags.

8. Select Next:Review, and then select Create user.

9. This will generate the user’s access keys (access key IDs and secret access keys) and pass-

word. Download the generated credentials by selecting the Download �csv and then save

the file to a safe location.

Share the credentials with users who need to access AWS services. This is an empty IAM

user with no access to any AWS services. An AWS administrator will need to execute the

CloudFormation template in some chapters to allow the appropriate access.

Recipe 2: Storing database credentials using AWS
Secrets Manager
You can use the following steps to store database credentials using AWS Secrets Manager:

1. To create the secrets, navigate to the AWS Secrets Manager dashboard at https://console.

aws.amazon.com/secretsmanager/.

2. Select Store a new secret.

3. Then, select Credentials for Redshift Cluster.

4. Specify the username and password.

5. Set DefaultEncryptionKey as the encryption key.

6. Select the Redshift cluster from the list that this secret will access, and click Next.

7. Specify the name for the secrets, keep the defaults, and click Next.

8. Keep the defaults for the configure automatic rotation, and click Next.

9. Review and click Store.

10. Capture the secret store ARN.

Recipe 3: Creating an IAM role for an AWS service
You can use the following steps to create an IAM role:

1. Navigate to the IAM console.

2. Select Roles, and then click Create role.

3. For Select type of trusted entity, choose AWS service.

4. For Choose a use case, select Redshift.

https://console.aws.amazon.com/secretsmanager/
https://console.aws.amazon.com/secretsmanager/

 423

5. For Select your use case, choose Redshift – Customizable (allows the Redshift cluster to

call AWS services on your behalf). Click Next: Permissions.

6. Skip Create Policy, click Next: Tags, and click Next: Review.

7. Provide a role name and click Create role. Note the role name to attach it to the Amazon

Redshift cluster.

Recipe 4: Attaching an IAM role to the Amazon
Redshift cluster
You can use the following steps to attach the IAM role to the Amazon Redshift cluster:

1. Navigate to the Redshift console.

2. Select CLUSTERS in the left navigation window.

3. Select the checkbox beside the Amazon Redshift cluster, and select Actions. From the

dropdown, select Manage IAM roles under Permissions.

Figure 1: Managing an IAM role for an Amazon Redshift cluster

4. In the Manage IAM roles section, select the correct IAM role from the dropdown and click

on Associate IAM role. Click on Save changes.

packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as

industry leading tools to help you plan your personal development and advance your career. For

more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos from

over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

At www.packt.com, you can also read a collection of free technical articles, sign up for a range of

free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

Other Books You May Enjoy

Other Books
You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Managing Data as a Product

Andrea Gioia

ISBN: 978-1-83546-853-1

• Overcome the challenges in scaling monolithic data platforms, including cognitive load,

tech debt, and maintenance costs

• Discover the benefits of adopting a data-as-a-product approach for scalability and sus-

tainability

• Navigate the complete data product lifecycle, from inception to decommissioning

• Automate data product lifecycle management using a self-serve platform

• Implement an incremental, value-driven strategy for transitioning to data-product-cen-

tric architectures

• Optimize data modeling in distributed environments to enhance GenAI-based use cases

https://www.packtpub.com/en-us/product/managing-data-as-a-product-9781835469378?srsltid=AfmBOoqvCjD_9uDkPlfr7_MfSbtA0MkIX-NXrkioPfv2OdloMrtsHEft

Other Books You May Enjoy 427

Serverless Machine Learning with Amazon Redshift ML

Debu Panda, Phil Bates, Bhanu Pittampally, Sumeet Joshi

ISBN: 978-1-80461-928-5

• Utilize Redshift Serverless for data ingestion, data analysis, and machine learning

• Create supervised and unsupervised models and learn how to supply your own custom

parameters

• Discover how to use time series forecasting in your data warehouse

• Create a SageMaker endpoint and use that to build a Redshift ML model for remote in-

ference

• Find out how to operationalize machine learning in your data warehouse

• Use model explainability and calculate probabilities with Amazon Redshift ML

https://www.packtpub.com/en-cy/product/serverless-machine-learning-with-amazon-redshift-ml-9781804619285

Other Books You May Enjoy

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and

apply today. We have worked with thousands of developers and tech professionals, just like you,

to help them share their insight with the global tech community. You can make a general appli-

cation, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share your thoughts
Now you’ve finished Amazon Redshift Cookbook, we’d love to hear your thoughts! If you purchased

the book from Amazon, please click here to go straight to the Amazon review page for this book

and share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re deliv-

ering excellent quality content.

https://packt.link/r/1836206917

Index

A

Amazon Bedrock

LLMs, using with SQL statements 391-401

Amazon Bedrock knowledge bases

used, for querying data with natural

language prompts for Amazon

Redshift 401-409

Amazon Data Firehose

used, for streaming data to Amazon

Redshift 89-95

Amazon DataZone

used, for data sharing for cross-

collaboration and self-service

analytics 356-376

Amazon DynamoDB

data, loading from 65-67

zero-ETL integration, used for ingesting

data from 110-117

Amazon EventBridge

used, for event-driven applications on

Amazon Redshift provisioned

clusters 150-160

Amazon Kinesis Data Streams (KDS)

streaming data, ingesting from 129-132

Amazon Managed Streaming

streaming data, ingesting for Apache Kafka

(MSK) 133-136

Amazon Managed Workflows

used, for orchestration for Apache Airflow

on provisioned clusters 172-179

Amazon provisioned cluster

cost controls, using to set actions for

concurrency scaling 296-298

Amazon Q generative SQL

used, for building SQL queries

automatically 384-387

Amazon RDS MySQL database

reference link 308

Amazon Redshift

Command Line (psql), used for

connecting to 30-32

connecting, programmatically

with Python 28-30

connecting, programmatically with

Redshift Data API 28-30

database, managing 34-36

data, streaming via Amazon Data

Firehose 89-95

data with natural language prompts,

querying with Amazon Bedrock

knowledge bases 401-409

Jupyter Notebook, used for

connecting to 23-27

monitoring 202-206

Index430

SQL Workbench/J client, used for

connecting to 20-23

used, for creating data lake export 324-328

Amazon Redshift Advisor

configuring, for provisioned

clusters 243-245

Amazon Redshift dataset

querying 409-420

Amazon Redshift data warehouse

data sharing read access 350-353

data sharing write access 353, 354

registering, as federated source 338, 339

Amazon Redshift ML

managing 387-391

Amazon Redshift provisioned clusters

cost controls, using to set actions 293-296

creating, with AWS CloudFormation 12-16

creating, with AWS Console 6-8

elastic resizing, scheduling 289-292

event-driven applications, with Amazon

EventBridge on 150-160

event-driven applications, with AWS

Lambda on 160-165

orchestration, using AWS Step

Functions on 165-171

pause and resume, scheduling 286-289

used, for managing superusers 194, 195

Amazon Redshift Query Editor V2 (QEV2)

used, for connecting to

data warehouse 17-19

used, for scheduling queries 145-150

Amazon Redshift RA3

using 339-344

Amazon Redshift Reserved Instance

pricing 283-286

Amazon Redshift Serverless clusters

creating, with AWS CloudFormation 8-12

IAM authentication, using to generate

database user credentials 195, 196

Amazon Redshift Serverless data warehouse

creating, with AWS Console 2-6

Amazon Redshift Spectrum

used, for extending data

warehouse 328-330

Amazon S3

auto-copy, used for ingesting

data from 136-142

COPY command, used for loading

data from 58-64

data, unloading to 95, 96

Amazon SageMaker Lakehouse 337, 338

AWS Glue Data Catalog, using 346

Amazon Simple Notification Service

(Amazon SNS) 150

Amazon Virtual Private Cloud

(Amazon VPC) 183

Apache Kafka (MSK)

streaming data, ingesting from Amazon

Managed Streaming 133-136

audit logs

managing 197-202

Aurora MySQL

zero-ETL integration, used for ingesting data

from 100-110

Aurora Postgres

zero-ETL integration, used for ingesting data

from 100-110

auto-copy

used, for ingesting data from

Amazon S3 136-142

Index 431

Automated Materialized Views (AutoMV)

features 48

AWS CloudFormation

used, for creating Amazon Redshift

provisioned cluster 12-16

used, for creating Amazon Redshift

Serverless cluster 8-12

AWS Console

used, for creating Amazon Redshift

provisioned cluster 6-8

used, for creating Amazon Redshift

Serverless data warehouse 2-6

AWS Data Exchange

used, for data sharing for

monetization 377-381

used, for data sharing for subscribing to

third-party data 377-381

AWS DMS

used, for ingesting data from transactional

sources 74-83

AWS EC2 Linux 309

AWS Glue

used, for cataloging and

ingesting data 84-89

AWS Glue Data Catalog

using, in Amazon SageMaker Lakehouse 346

AWS Lake Formation

used, for building data lake catalog 307-324

AWS Lambda

used, for event-driven applications

on Amazon Redshift provisioned

clusters 160-165

AWS Step Functions

used, for orchestration on provisioned

clusters 165-171

AWS Trusted Advisor 280-282

B

Base Capacity 302

business intelligence (BI) 45, 383

C

column compression

managing 245-249

column-level security

customer table, using 229, 230

GRANT statements, using 230

implementing 229

REVOKE statements, using 230

Command Line (psql)

used, for connecting to Amazon Redshift

30-32

concurrency scaling

utilizing, for provisioned clusters 270-273

consumer Amazon Redshift data

warehouse 350, 354

COPY command

used, for loading data from

Amazon S3 58-64

cost controls

using, for Redshift Serverless 298-302

using, to set actions for concurrency

scaling for Amazon provisioned

cluster 296-298

using, to set actions for Redshift

Spectrum 293-296

D

data

cataloging and ingesting, with

AWS Glue 84-89

data, loading from Amazon S3 with COPY

command 58-64

Index432

ingesting, from Amazon DynamoDB with

zero-ETL integration 110-117

ingesting, from Amazon S3 with

auto-copy 136-142

ingesting, from Aurora MySQL with zero-ETL

integration 100-110

ingesting, from Aurora Postgres with zero-

ETL integration 100-110

ingesting, from RDS MySQL with zero-ETL

integration 100

ingesting, from SaaS application Salesforce

with zero-ETL integration 117-128

ingesting, from transactional sources with

AWS DMS 74-83

loading, from Amazon DynamoDB 65-67

streaming, to Amazon Redshift via Amazon

Data Firehose 89-95

unloading, to Amazon S3 95, 96

updating and inserting 68-74

database

managing, in Amazon Redshift 34-36

materialized views, managing 45-48

schema, managing 36-38

stored procedures, managing 49-52

tables, managing 38-42

UDFs, managing 52-56

views, managing 43-45

database administrator (DBA) 49

Database Migration Service (DMS) 74

database user credentials

IAM authentication, using to generate for

Amazon Redshift serverless

clusters 195, 196

Data Definition Language (DDL) 49, 293

data distribution

managing 249-254

data encryption 188-190

in transit 191-193

data lake catalog

building, with AWS Lake Formation 307-324

data lake export

creating, from Amazon Redshift 324-328

data manipulation language (DML) 49

data sharing read access

across multiple Amazon Redshift data

warehouses 350-353

data sharing, with Amazon DataZone

for cross-collaboration and self-service

analytics 356-376

data sharing, with AWS Data Exchange

for monetization 377-381

data sharing write access

across multiple Amazon Redshift data

warehouses 353-355

data warehouse

Amazon Redshift query editor v2, used for

connecting to 17-19

extending, with Amazon Redshift

Spectrum 328-330

data, with natural language prompts

querying, with Amazon Bedrock knowledge

bases 409

querying, with Amazon Bedrock knowledge

bases for Amazon Redshift 401-408

Directed Acyclic Graphs (DAGs) 172

dynamic data masking (DDM) 235

implementing 235-240

reference link 235

E

environment profiles 360

event-driven applications

with Amazon EventBridge, on Amazon

Redshift provisioned clusters 150-165

Index 433

Extensible Markup Language (XML) 49

Extract Load Transform (ELT) 68

Extract, Transform, and Load (ETL) 49, 143

F

federated query

used, for querying operational

source 331-337

G

gigabytes (GB) 33

GRANT syntax

reference link 230

I

IAM authentication

using, to generate database user

credentials for Amazon Redshift

serverless clusters 195, 196

IAM Identity Center

used, for single sign-on 206-218

Identity and Access Management (IAM) 167

infrastructure security

managing 183-187

input/output (I/O) 42

J

Jupyter Notebook

used, for connecting to Amazon

Redshift 23-27

K

Key Management Service (KMS) 55

L

large language models (LLMs) 383

using, in Amazon Bedrock with SQL

statements 391-395

using, in Amazon SageMaker Jumpstart with

SQL statements 395-401

M

machine learning (ML) 245, 307, 383

Managed Workflows for Apache Airflow

(MWAA) 172, 173

massively parallel processing (MPP) 39, 64

Max RPU-hours 303

MaxRPU (Max Capacity) 303

metadata security 219-222

mutual Transport Layer Security (mTLS) 135

MySQL command line 309

MySQL engine 308

O

online analytical processing (OLAP) 33

operational source

querying, with federated query 331-337

orchestration

with Amazon Managed Workflows for

Apache Airflow on provisioned

clusters 172-179

with AWS Step Functions, on provisioned

clusters 165-171

P

payment card information (PCI) 229

personally identifiable information

(PII) 44, 229

petabyte (PB) 33

Index434

Procedural Language/PostgreSQL

(PL/pgSQL) 49

producer Amazon Redshift provisioned

cluster 350-354

provisioned clusters

Amazon Redshift Advisor,

configuring 243-245

concurrency scaling, utilizing 270-273

queries, analyzing and improving 261-264

Spectrum queries, optimizing 274-277

Workload Management (WLM),

configuring 265-269

psycog2 library

URL 165

Python

used, for connecting to Amazon Redshift

programmatically 28-30

Q

queries

scheduling, with Amazon Redshift Query

Editor V2 (QEV2) 145-150

query data

registering, with Amazon Athena 338, 339

registering, with Amazon Redshift 338, 339

R

RDS MySQL 309

zero-ETL integration, used for ingesting data

from 100-110

RDS PostgreSQL cluster

reference link 331

Redshift Data API

used, for connecting to Amazon Redshift

programmatically 28-30

Redshift managed storage (RMS) 305

Redshift Serverless

cost controls, using 298-302

REVOKE syntax

reference link 230

role-based access control (RBAC) 223

admin database role, creating 224-228

implementing 224

read-only database role, creating 224-227

read-write database role, creating 224-227

role inheritance 228

row-level security (RLS)

implementing 231-234

S

software-as-a-service (SaaS) 117

sort key

managing 254-260

Spectrum queries

optimizing, for provisioned clusters 274-277

SQL queries

building, automatically with Amazon Q

generative SQL 384-387

SQL statements

features 395

used, for using LLMs in Amazon

Bedrock 391-395

used, for using LLMs in Amazon SageMaker

Jumpstart 395-401

SQL Workbench/J client

used, for connecting to Amazon

Redshift 20-23

star schema benchmark (SSB) 59

streaming data

ingesting, from Amazon Kinesis Data

Streams (KDS) 129-132

ingesting, from Amazon Managed Streaming

for Apache Kafka (MSK) 133-136

Index 435

Structured Query Language (SQL) 33

superusers

managing, with Amazon Redshift

provisioned cluster 194, 195

T

transactional sources

AWS DMS, used for ingesting data

from 74-83

U

User-Defined Functions (UDFs) 240, 353

managing, in database 52-56

W

Workload Management (WLM)

configuring, for provisioned

clusters 265-269

Z

zero-ETL integration

used, for ingesting data from Amazon

DynamoDB 110-117

used, for ingesting data from Aurora

MySQL 100-110

used, for ingesting data from Aurora

Postgres 100-110

used, for ingesting data from RDS

MySQL 100-110

used, for ingesting data from SaaS

application Salesforce 117-128

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical

books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free

content in your inbox daily.

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below:

https://packt.link/free-ebook/9781836206910

2. Submit your proof of purchase.

3. That’s it! We’ll send your free PDF and other benefits to your email directly.

https://packt.link/free-ebook/9781836206910

	Cover
	Copyright
	Foreword
	Contributors
	Table of Contents
	Preface
	Chapter 1: Getting Started with Amazon Redshift
	Creating an Amazon Redshift Serverless data warehouse using the AWS Console
	Getting ready
	How to do it…
	How it works…

	Creating an Amazon Redshift provisioned cluster using the AWS Console
	Getting ready
	How to do it…

	Creating an Amazon Redshift Serverless cluster using AWS CloudFormation
	Getting ready
	How to do it…
	How it works…

	Creating an Amazon Redshift provisioned cluster using AWS CloudFormation
	Getting ready
	How to do it…

	Connecting to a data warehouse using Amazon Redshift query editor v2
	Getting ready
	How to do it…

	Connecting to Amazon Redshift using SQL Workbench/J client
	Getting ready
	How to do it…

	Connecting to Amazon Redshift using Jupyter Notebook
	Getting ready
	How to do it…

	Connecting to Amazon Redshift programmatically using Python and the Redshift Data API
	Getting ready
	How to do it…

	Connecting to Amazon Redshift using Command Line (psql)
	Getting ready
	How to do it…

	Chapter 2: Data Management
	Technical requirements
	Managing a database in Amazon Redshift
	Getting ready
	How to do it…

	Managing a schema in a database
	Getting ready
	How to do it…

	Managing tables in a database
	Getting ready
	How to do it…
	How it works…
	See also...

	Managing views in a database
	Getting ready
	How to do it…

	Managing materialized views in a database
	Getting ready
	How to do it…
	How it works…

	Managing stored procedures in a database
	Getting ready
	How to do it…
	How it works…
	See also...

	Managing UDFs in a database
	Getting ready
	How to do it…
	How it works…
	See also...

	Chapter 3: Loading and Unloading Data
	Technical requirements
	Loading data from Amazon S3 using COPY
	Getting ready
	How to do it…
	How it works…
	See also…

	Loading data from Amazon DynamoDB
	Getting ready
	How to do it…
	How it works…

	Updating and inserting data
	Getting ready
	How to do it…

	Ingesting data from transactional sources using AWS DMS
	Getting ready
	How to do it…
	How it works…
	See also…

	Cataloging and ingesting data using AWS Glue
	Getting ready
	How to do it…
	How it works…

	Streaming data to Amazon Redshift via Amazon Data Firehose
	Getting ready
	How to do it…
	How it works…

	Unloading data to Amazon S3
	Getting ready
	How to do it…
	See also…

	Chapter 4: Zero-ETL Ingestions
	Technical requirements
	Ingesting data from Aurora MySQL/Aurora Postgres/RDS MySQL using zero-ETL integration
	Getting ready
	How to do it…
	How it works…

	Ingesting data from Amazon DynamoDB using zero-ETL integration
	Getting ready
	How to do it…
	How it works…

	Ingesting data from SaaS applications like Salesforce using zero-ETL integration
	Getting ready
	How to do it…

	Ingesting streaming data from Amazon Kinesis Data Streams (KDS)
	Getting ready
	How to do it…

	Ingesting streaming data from Amazon Managed Streaming for Apache Kafka (MSK)
	Getting ready
	How to do it…
	How it works…

	Near-real-time ingestion of data from Amazon S3 using auto-copy
	Getting ready
	How to do it…
	How it works…

	Chapter 5: Scalable Data Orchestration for Automation
	Technical requirements
	Scheduling queries using Amazon Redshift Query Editor V2
	Getting ready
	How to do it…
	How it works…

	Event-driven applications using Amazon EventBridge on Amazon Redshift provisioned clusters
	Getting ready
	How to do it…
	How it works…

	Event-driven applications using AWS Lambda on Amazon Redshift provisioned clusters
	Getting ready
	How to do it…
	How it works…
	See also...

	Orchestration using AWS Step Functions on provisioned clusters
	Getting ready
	How to do it…
	How it works…
	See also...

	Orchestration using Amazon Managed Workflows for Apache Airflow on provisioned clusters
	Getting ready
	How to do it…
	How it works…

	Chapter 6: Platform Authorization and Security
	Technical requirements
	Managing infrastructure security
	Getting ready
	How to do it…

	Data encryption at rest
	Getting ready
	How to do it…

	Data encryption in transit
	Getting ready
	How to do it...

	Managing superusers using an Amazon Redshift provisioned cluster
	Getting ready
	How to do it…
	See also…

	Using IAM authentication to generate database user credentials for Amazon Redshift serverless clusters
	Getting ready
	How to do it...

	Managing audit logs
	Getting ready
	How to do it…
	How it works…

	Monitoring Amazon Redshift
	Getting ready
	How to do it…
	How it works…

	Single sign-on using AWS IAM Identity Center
	Getting ready
	How to do it…
	How it works…
	See also…

	Metadata security
	Getting ready
	How to do it...
	How it works…

	Chapter 7: Data Authorization and Security
	Technical requirements
	Implementing RBAC
	Getting ready
	How to do it…
	How it works…

	Implementing column-level security
	Getting ready
	How to do it…
	How it works…

	Implementing row-level security
	Getting ready
	How to do it…
	How it works…

	Implementing dynamic data masking
	Getting ready
	How to do it…
	How it works…

	Chapter 8: Performance Optimization
	Technical requirements
	Configuring Amazon Redshift Advisor for provisioned clusters
	Getting ready
	How to do it…
	How it works…

	Managing column compression
	Getting ready
	How to do it…
	How it works…

	Managing data distribution
	Getting ready
	How to do it…
	How it works…

	Managing the sort key
	Getting ready
	How to do it…
	How it works…

	Analyzing and improving queries for provisioned clusters
	Getting ready
	How to do it…
	How it works…

	Configuring Workload Management (WLM) for provisioned cluster
	Getting ready
	How to do it…
	How it works…

	Utilizing concurrency scaling for provisioned clusters
	Getting ready
	How to do it…
	How it works…

	Optimizing Spectrum queries for provisioned clusters
	Getting ready
	How to do it…
	How it works…

	Chapter 9: Cost Optimization
	Technical requirements
	AWS Trusted Advisor
	Getting ready
	How to do it…
	How it works…

	Amazon Redshift Reserved Instance pricing
	Getting ready
	How to do it…
	See also...

	Scheduling pause and resume for Amazon Redshift provisioned cluster
	Getting ready
	How to do it…
	How it works…

	Scheduling elastic resizing for an Amazon Redshift provisioned cluster
	Getting ready
	How to do it…
	How it works…

	Using cost controls to set actions for Redshift Spectrum
	Getting ready
	How to do it…
	See also…

	Using cost controls to set actions for concurrency scaling for an Amazon provisioned cluster
	Getting ready
	How to do it…
	See also…

	Using cost controls for Redshift Serverless
	Getting ready
	How to do it…
	How it works…

	Chapter 10: Lakehouse Architecture
	Technical requirements
	Building a data lake catalog using AWS Lake Formation
	Getting ready
	How to do it…
	How it works…

	Carrying out a data lake export from Amazon Redshift
	Getting ready
	How to do it…

	Extending a data warehouse using Amazon Redshift Spectrum
	Getting ready
	How to do it…

	Querying an operational source using a federated query
	Getting ready
	How to do it…

	Amazon SageMaker Lakehouse
	Getting ready
	How to do it…
	How it works…

	Chapter 11: Data Sharing with Amazon Redshift
	Technical requirements
	Data sharing read access across multiple Amazon Redshift data warehouses
	Getting ready
	How to do it…
	How it works…
	See also...

	Data sharing write access across multiple Amazon Redshift data warehouses
	Getting ready
	How to do it…
	How it works…

	Data sharing using Amazon DataZone for cross-collaboration and self-service analytics
	Getting ready
	How to do it…
	How it works…

	Data sharing using AWS Data Exchange for monetization and subscribing to third-party data
	Getting ready
	How to do it…
	How it works…

	Chapter 12: Generative AI and ML with Amazon Redshift
	Technical requirements
	Building SQL queries automatically using Amazon Q generative SQL
	Getting ready
	How to do it…
	How it works…

	Managing Amazon Redshift ML
	Getting ready
	How to do it…
	How it works…

	Using LLMs in Amazon Bedrock using SQL statements
	Getting ready
	How to do it…
	How it works…

	Using LLMs in Amazon SageMaker Jumpstart using SQL statements
	Getting ready
	How to do it…
	How it works…

	Querying your data with natural language prompts using Amazon Bedrock knowledge bases for Amazon Redshift
	Getting ready
	How to do it…
	How it works…

	Generative BI with Amazon Q with QuickSight querying an Amazon Redshift dataset
	Getting ready
	How to do it…
	How it works…

	Appendix
	Recipe 1: Creating an IAM user
	Recipe 2: Storing database credentials using AWS Secrets Manager
	Recipe 3: Creating an IAM role for an AWS service
	Recipe 4: Attaching an IAM role to the Amazon Redshift cluster

	Other Books You May Enjoy
	Index

